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Phenomenology and Models

« Ultimately, we look to develop a theory that describes
the interactions that drive biological systems

« The embodiment of the resulting theory should be a
model describing the interactions we are seeking to
understand

« Phenomenology, or phenomenological models,
describe a body of knowledge that relates empirical
observations of phenomena to each other, in a way
which is consistent with fundamental theory, but is
not directly derived from theory

« The question is not “Is this model right?” Rather, the

question is “Is the model useful?” ﬁ:



State Space Models
of Gene Expression
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Cells Converge to Attractive States

C high-dimensional system as “attractor landscape (schematic)
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" microarray for 10 ganes

Stuart Kauffman presented the idea of a gene expression landscape
with attractors

«~250 stable cell types each represent attractors
*Cells can be "pushed" or induced to converge to an attractor.

*Once in the attractor, a cell is robust to small perturbations.




Differentiation of Promyelocytes into
Neutrophil-Like Cells

Time 0
Promyeloctyes Q’*‘Uﬂ {

(HL-60 Cell Line)

Affymetrix
GeneChip

RA used in differentiation
therapy for acute
promyelocytic leukemia.

All-Trans Retinoic Acid ~6 days

(ATRA)

Dimethyl Sulfoxide
(DMSO)

A Combined with

.| chemotherapy, complete
| remission rates as high
as 90-95% can be

achieved.
Day 7 ﬁ

Collins et al. PNAS 1978 Huang et al. PRL 2005
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Cells Display Divergent Trajectories That
Eventually Converge as they Differentiate
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Graphical representation of the results from a Self-Organizing Map clustering.

Expression data from a single sample (time point) clustered according to a grid.

What factors drive this divergent-then-convergent behavior? g

Huang et al. PRL 2005




Our Hypothesis

Observed

Trajectory
State A® /(Perturbation 1)

@® Staie B

Transient Pathway
(Perturbation 1)
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Functional Enrichment Analysis

Enriched GO functional classes in each group.

RNA metabolic process
Transcription
RNA biosynthetic process

Core Gene Steroid biosynthetic process

Group Transcription, DNA-dependent

Regulation of transcription, DNA-dependent
Regulation of transcription
Nucleobase, nucleoside, nucleotide and
nucleic acid metabolic process

Defense response
Response to external stimulus

_ Response to wounding
Transient

Inflammatory response
Gene Group

Signal transduction
Response to stimulus
Cell communication
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Transient Trajectory
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Core Trajectory
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What Have We Learned?

Transition from one state to another is driven by two

classes of genes: _ _
Core genes whose sustained expression

carry the system down developmental
pathways.

Promyelo

® Neutrophils

Transient genes that fire initially in response to a

stimulus, but whose expression decays over time.

These are instrumental in kicking the system into

the transition. S




Waddington’s Hypothesis

Can we model ‘attractor states’ if
we accept that a cell has multiple
phenotypes, many of which are
shared with other cells types?

Can we define Competency if we
don’t first understand the cellular
state of play?

Evocation is more than just the
external signal - it must define
essential aspects of a canalised
network

Canalisation: An evolutionarily
conserved process that has
specialised as organisms become
more complex. The means to
model complexity at a genetic,
epigenetic or transcriptome level.

Individuation: What is the range
of normal, and can we use this to
predict disease states.

L




More generally, we can think about other
transitions between states.

Promyi¢l

® |\GallDpsl2



In the presence of disease...

Disease
Cell Ty Population
® Cell Type 2
Control
Population
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Within any one population of individuals, we can think
of individuals each having their unique trajectory.

Variability within a
/ population.

®  Siate 2

Individual

Average Dominant Path




Attract: a method for identifying
core pathways that underlie cell
fate transitions

Jessica C. Mar, DFCI
Christine Wells, Griffith University and
Eskitis Institute




Cell Diversity.

A mammalian organism consists of ~250 highly-specialized cell
types.

Neural Cells ]
Cardiac Muscle

@

Pluripotent

Fertilized Egg Stem Cells

Most cell types share the same genome.

Epigenetic modification and transcription factor networks
generate the mechanism for cell type-specific diversity.

A cell type's unique program is manifested by Iits
transcriptional profile.




Deconstructing a Cell's Gene
Expression Program

|solating the active biological pathways that are specific to a cell
type allows us to begin to model the transcriptional landscape of
cellular states.

Linking gene signatures to cell lines is a start.

pluripotent stem cells

progenitor M

cells

¢ fibroblasts

Our goal is to go further, and (eventually) model cell fate transitions.

A DA 2

Adapted from Sui Huang, Bioessays 31:546, 2009




Finding Core Pathways that
Underlie Cell Fate Transition

Synexpression
Group 1 Correlated Set 1

Synexpression Correlated Set 2
Group 2

Gene Set ‘ Attractor Synexpression Correlated Set M
Enrichment Module 2 Group M 7
Analysis

Cellular Network of
Synexpression Group M +
Group 1 4 ‘ Correlated Set M

" Synexpression

~-----_l

High quality knowledge-based inferences (KEGG)

R package attract available from Bioconductor




GSEA + Linear Model

GSEA tests if members of the gene set are randomly distributed

In the larger ranked list.
ﬁ
ClassA ClassB
S 0 . ||
2 A Calculate a
7 running-sum
© . . .
Q statistic.
SV
)

Jiang and Gentleman extended the original implementation by
Subramanian.

They generalized the ranking statistic using a generic linear model:

[a Da 29




Finding Core Pathways that
Underlie Cell Fate Transition

Synexpression
Group 1 Correlated Set 1

Synexpression Correlated Set 2
Group 2

Gene Set ‘ Attractor Synexpression Correlated Set M
Enrichment Module 2 Group M 7
Analysis

Cellular Network of
Synexpression Group M +
Group 1 4 ‘ Correlated Set M

" Synexpression

High quality knowledge-based inferences (KEGG)

R package attract available from Bioconductor




MAPK Synexpression Group 1 MAPK Synexpression Group 2 MAPK Synexpression Group 3
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Average Correlated Profiles = Average Synexpression Profiles




Defining an Informativeness

condition 1 condition 2 condition 3 condition 4
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Step 4:
Step 3:Repeatfork=kp+1,...,kf. Th.e value of kWIt.h the
maximum Informativeness
Metric is the optimal
1 number of clusters.
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Interpreting Synexpression Groups
through Biological Networks

MAPK_synexpression1 inc correlated genelist
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Example of MAPK Synexpression Group




Within any one population of individuals, we can think
of individuals each having their unique trajectory.

Variability within a
/ population.

®  Siate 2

Individual

Average Dominant Path




A variational approach
to expression analysis
In human disease

Jessica C. Mar, DFCI
Christine Wells, Griffith University and
Eskitis Institute




Nasal biopsies from a control

group of related donors from a

larger study on Parkinson's
disease and schizophrenia.

Mesenchymal stem cells from
a group of unrelated donors
from three sources: human
placenta, chord blood and
bone marrow.

Data Set: Studying Adult
Stem Cell Populations

Control Lines
9 Fibroblasts
9 OPBs Primary Olfactory Biopsies
15 ONCs Expanded Olfactory
neurosphere-derived Cells
12 MSCs Mesenchymal stem cells

Disease Grops
9 Fibroblasts

9 Schizophrenia ONCs
15 Parkinson’s Disease ONCs




Olfactory Stem Cells Have More
Plasticity Across Attractor Modules

Indicative of competency to respond to external signals

Exhibit plastic topology
——

~ g
pluripotent stem Exhibit constrained
cells progenitor cells topology

Differentiated cell

{

More plastic topology




\Variance of expression imposes
topology on the network

L.ow variance indicates tighter regulatory constraints
High variance indicates more functional plasticity

Low
Klnase A variance
Transcrlptlonal activator A constrains

outcomes
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ldentifying the Core Attractor
State Pathway Modules

For the Control Group only, we used the data set on 4 cell lines:

KEGG Number of
Rank Pathway ID KEGG Pathway Name P-value Mumina IDs

4010 MAPK signaling pathway 0 2308
4510 Regulation of actin cytoskeleton 0 196
4510 Focal adhesion

4120 UIbiquitin mediated proteolysis

194
141
132
131

29
115
a7
96

4910 Insulin signaling pathway

4310 Wit signaling pathway

4020 Calcium signaling pathway

4530 Tight junction

4670 Leukocyte transendothelial migration
4650 Matural killer cell mediated cytotoxicity

- R o R e R R e e R e




Measuring Variability

Assess standard deviation of probe fluorescent intensity across all of the donors.

Coefficient of Variation = StandardDeviation:Mean

Control Group Genome-wide Distribution
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lllumina Ref8v2 chips, 13709 probes met detection threshold criteria.




Fibroblasts and Stem Cells Have
Similar Genome-wide CV

Genome-wide Distribution of CV Values for the Control Group

Low Variance High Variance
Genes Genes

log,(Coefficient of Variation)

Highly Lowly
Constrained Constrained QAR
Genes Genes %@ —1




Genome-wide Donor Variability
Distributions Are Similar
Between Disease Groups

For the ONS cells: 9 SZ patients, 11 controls, 13 PD patients.

Genome-wide Distribution of CV Values for ONS XS Cells

2 CONTROL OUTLIERS REMOVED
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Characterizing Variability in a
Disease Group

Lower 25" Upper 25t
Percentile Percentile

Low P  Medium High
Variance Variance Variance

Log,(Expression Variance)
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SZ and PD Show Strikingly.
Different Variability Profiles

We count the number of highly constrained and lowly
constrained genes in each patient group.

Ratios of gene counts between disease:control

MAPK module - deviation from control
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B/ Contrgl Copmty

Gene Count Ratios Between Disease and Control for
Different Levels of Expression Variance
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P-values MAPK Ubiquitin
SZ versus Control 0.002769 0.243118 0.087842 0.051139 0.015744

PD versus Control  0.002807 0.00252 0.000315 0.001123 0.001936




SZ Group Shows Increased
Variance for the MAPK Pathway.

Definition of high and low variance is based on our 25% cut-off
Imposed on the pooled distribution.

Patterns of variability are still retained even after increasing the
stringency of this cut-off.

5% Cut-off 10% Cut-off 25% Cut-off

Control PD Sz Control PD Sz Control PD Sz

Number of genes

- Low Variance High Variance




SZ Stem Cells are Different from
Fibroblasts

W High Variance Medium Variance M Low Variance

Control (Fibroblasts) Control (XS Cells) SZ (Fibroblasts) SZ (XS Cells) Expected Counts

. -

P-value 0.6548 P-value 1.8717 x 1072




Functional Roles Are Associated with Constraint

High-variance genes
tend to function as

cell surface receptors.

Low-variance genes
function as kinases
and transferases.

MAPK module - control variability
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Variance Constraints Alter
Network Topology

Degree distributions for the MAPK module are significantly different ;
(Kolmogorov-Smirnov test).

SZ Group Control Group

[\ P-value 3.5 x 104

-10 0 10 20 a0 40

PD Group

/\ P-value 2.5 x 104
/ e

Node Degree

P-value 2.8 x 107

Density
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Severity of statistical significance
IS altered by disease status.

Density
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SZ Stem Cells Are More Similar
to Healthy Fibroblasts

The transcriptional profiles of ONS XS cells from SZ patients more closely
resemble those of healthy fibroblasts than any other stem cell signature.
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Control Fibroblasts

. SZ Fibroblasts

8/9 SZ ONS clusterin
with the healthy
controls.
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Disease Variational Analysis

« SZ and PD sit at opposite ends of the expression
variance spectrum for core pathway modules.

« A marked decrease In variance was observed for the

SZ patients; this raises the possibility that neural
stems (and the individuals they were derived from)
may be less able to respond to disturbances in the
environment.

« This is supported by the observation that SZ stem cells
have expression profiles that are more similar to
healthy fibroblasts.

« PD was associated with an increase in variance; this

may be a result common to other diseases of aging.
« What are the underlying genetic effects that give rise

D6 00 BS

to this variation in expression? oo




Extrapolating to Individuals

Derive a probabilistic model that determines the most likely path of
Interactions in a network/pathway.

Variance seems like an intuitively appealing starting point:

low variance suggests high probability of an interaction.
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n <
Receptor B e A o 2
C —
ranscrlptlona activator B = 9
Yo, © O
coch 'A 3 O
KmaseD D
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Provide a means to rank individuals and predict paths for an individual.
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Path Integral Formulation of
uantum Mechani

State A

Classical, ‘ State B
Minimal Energy
Trajectory
Consider all possible paths bet arting and final states

*Weight each by a complex phase factor ~exp(i*Energy) —

.

Sum over all possible paths



Where are we going?

There is still arole for biology!

We are approaching a time in which we can begin to
look at cells and organisms holistically.

We also need to begin to think about integrating
diverse data types in an intelligent way.

This must include cross-species comparisons and
Inclusion of environmental effects.

We may soon be in a position to begin development of
a theoretical biology.

Theoretical biology will require a transition from a

A 0a 25
Deterministic to a Stochastic approach. i%}.:_.



Essentially, all models are wrong,
but some are useful.

— George E. Box




Before | came here | was confused
about this subject.
After listening to your lecture,
| am still confused but at a higher level.

- Enrico Fermi, (1901-1954)
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Genomics IS here to stay
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Spitting is unaccer*able.

Bus Operators are now equipped witf
DNA Kits to assist with the apprehensior
of offenders.
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