

ARTIFICIAL NEURAL NETWORKS IN THE PREDICTION OF LYMPHO VASCULAR INVASION IN PRIMARY BREAST CANCER

Dhondalay G. K.*, Lemetre C.*, Burnett A.*, Lancashire L. J.+, Ellis I.O.^, Martin S.#, Ball G. R.*

* John Van Geest Cancer Research Centre, Nottingham Trent University, Clifton Campus, Clifton Lane, Nottingham NG11 8NS, UK
+ Clinical and Experimental Pharmacology, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, UK
^ Department of Histopathology, Nottingham University Hospitals Trust and University of Nottingham, Nottingham NG7 2UH, UK
Department of Clinical Oncology, University Hospitals, City Hospital Campus, University of Nottingham, Hucknall Road, Nottingham NG5 1PB, UK

3 September 2010

NTU

OVERVIEW

Introduction

Objectives

Data Source

Introduction:

- Lympho Vascular Invasion (LVI) as a prognostic marker in breast cancer
- Artificial Neural Networks (ANN) stepwise Multi Layer Perceptron (MLP) and Back Propagation (BP)
 - Robust, nonlinear and flexible
 - Can handle huge and complex datasets
 - Applications ranging from simple decision making to complex medical intervention determining in cancer

Objectives:

- To use stepwise ANN with MLP and BP to select highly correlating genes from genomic data
- To use in-house developed ANN to investigate interplaying genes governing LVI
- To decipher LVI pathway

Data Source:

- Nottingham Tenovus Primary Breast Carcinoma data
 - ✓ 70 years and less women presented with stage I and II primary invasive breast carcinoma
 - ✓ 128 frozen breast cancer samples from Nottingham Hospital NHS Trust Tumour Bank between 1986-1992, using Illumina Gene array with 47293 genes

Discussion & Conclusion: RESULTS

ANN was successful in differentiating closely related gene isoforms

GI 42519