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Outline

» Biology
» Mathematics
» Simulations and pretty pictures

» Real data
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Section 1: Biology
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Copy number variation

> 2 copies of each chromosome (except X in men)

» cancer cells: copy number variation
» oncogenes: amplification

» tumour suppressor genes: deletion
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Measuring the copy number

Array CGH: The Complete Process
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Step5  The microarray scanner measures the fluorescent signals.

Step6  Computer software analyzes the data and generates a plot.
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In reality
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Section 2: Mathematics

» reconstruct the underlying piecewise constant signal

» identify gains and losses

» Hidden Markov Models (J. Fridlyand, ...)

» dynamic programming (F. Picard, S. Robin, ...)

> sparsity (R. Tibshirani, T. Hastie, ...)
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Dynamic programming

p probes and K breakpoints

v

v

minimise some criteria over the ([2) partitions
e.g., mean square error

v

dynamic programming O(p*) — O(p?)

v

today, p ~ 1 million

v

tomorrow (next generation sequencing), p ~ 1 billion
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The Lasso (Tibshirani, 1996)

» min | Y — X3|> subject to > |3 < p.

» for small u, most 3; are equally zero —
sparse variable selection.
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LARS (Efron et al. 2004)

v

LARS = Least Angle Regression.
Y and X and [ as before.

v

» 1) start with all coefficients (; as 0.

» 2) find variable x; (column of X) most correlated with Y.

v

3) increase {; until get an x; such that
Y — x;3; equally correlated with x; and Xx;.

v

4) proceed in equiangular direction to x; and x;
until ... xk, etc.
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LARS (Efron et al. 2004)

i iy Vi x

» simple formula calculates when next variable enters

(and B1,...,0p).
» only one variable enters at a time if data in general position.
» whole solution path in time it takes to do a least-squares fit!

» tiny modification gives the Lasso!
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The Fused Lasso

> Let Y be the vector of length p of values along the genome.

» Let X be the identity matrix of size p.

» The Lasso:
min ||Y — X3||?> subject to > |Bi] < p.

> ie, min Y (y; — B;)?> subject to |3 < p.
» the Lasso is no good for copy number variation/CGH stuff.
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The Fused Lasso

» min|Y — X3||? subjectto > |Bj|<pu and
P S 18i — Bi—a] <.
» keeps sparsity of coefficients.
» induces sparsity in difference between consecutive coefficients.

» i.e. induces piecewise-constant profiles!

» but loses link with superfast Lars algorithm.

> requires convex optimization — slow.
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The Fused Lasso but without the Lasso

» Harchaoui and Lévy-Leduc (2008).
» forget about the constraint > |5i] < p.

» just solve:
min ||Y — X3||?> subject to P 1B = Bical <.

» by convention, By = 0 (and remember X = I,).

» change of variable: u; = §; — Bi_1.

» result:
min||Y — Xul|?> subject to Y7 . |ui| <v,
with:
1 0 0O
11 00
X=11110
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A fast implementation

» the LARS package in R has to store X, a p X p matrix.

» if p >~ 1 million, your computer will not be happy.

» Harchaoui and Lévy-Leduc used the special structure of X to
avoid storing it.

» e.g. to find the first non-zero u;, find column of X that is
most correlated with Y.

» first non-zero coefficient (breakpoint!) = up_j11, with i the
index of the maximum of |cumsum(y,, yp—1,...,y1)|.

» this and other tools — find k breakpoints in O(pk).
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From one profile to many

many individuals with the same cancer
do they share copy number variations?
actually, yes.

but not always.

vV V. v v Y

and rarely all the same ones. e.g. bladder cancer:
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From one profile to many

» either segment separately —

look for shared,

» or segment together and force shared.
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Formulation of the joint segmentation problem

» Y now an n x p matrix (n individuals, p probes).

» Let 5 bean nx pand 3 its it column.

> min|Y — 5”2 subject to ?:1 18 — Bi—ill2 < v

» forces a given breakpoint on all profiles at the same time!
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Group Lasso and Group Lars

» change of variable: u; = 8; — B;j_1.

» problem becomes:
Y — 3P, Xiui||® subject to S0, [lui]l < v,

minueRnp
with Y as an np-dimensional vector, and X; an np x n matrix.
» this is exactly a group Lasso.

» variables are selected in groups.

» here, selecting a group = selecting a shared breakpoint.
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Group Lasso and Group Lars

» group Lasso and group Lars introduced by Yuan and Lin
(2006).

» group Lasso loses the piecewise constant property
— slower algorithm to get the whole solution path.

» group Lars = same geometric interpretation as Lars.

» it retains the piecewise constant property
— can create fast path algorithm in O(knp).

» e.g., 20 individuals, 1 million probes:
takes 6.1 seconds to find each new shared breakpoint!
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Simulation

» add differing amounts of noise to piecewise-constant signal:
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Distribution of number of required individuals: all shared
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Distribution of number of required individuals: some shared
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Bladder tumour profiles
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Conclusions and future work

fast
algorithm does what it should
theoretical results

next generation sequencing

vV vVv.v.v Yy

fast — faster!

off the mark com by Mark Parisi

HEY, A WATER SLYDE!
HOW FAST D0 YoU
THINKIT 1S7?
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