Spatial clustering of array CGH features in combination with hierarchical multiple testing

Mark A. van de Wiel^{*1,2}

¹Dep. of Epidemiology and Biostatistics VU University medical center, Amsterdam

> ²Dep. of Mathematics VU University, Amsterdam

Cancer Bioinformatics Workshop, September 2010

* Joint work with Kyung In Kim (NCI/NIH) and Etienne Roquain (Univ. Paris 06), to be published in SAGMB (2010).

イロト イポト イラト イラト

Setting

Data

- Discretized (called) high-resolution DNA copy number data: -1 (loss), 0 (normal), 1 (gain).
- Relevant clinical response, such as group label

Aim

Detect DNA regions with significant association between copy number and clinical response

Main problems

- DNA regions relevant for copy number not a priori defined
- Increase of resolution challenges multiple testing corrections

Setting

Data

- Discretized (called) high-resolution DNA copy number data: -1 (loss), 0 (normal), 1 (gain).
- Relevant clinical response, such as group label

Aim

Detect DNA regions with significant association between copy number and clinical response

Main problems

- DNA regions relevant for copy number not a priori defined
- Increase of resolution challenges multiple testing corrections

Setting

Data

- Discretized (called) high-resolution DNA copy number data: -1 (loss), 0 (normal), 1 (gain).
- Relevant clinical response, such as group label

Aim

Detect DNA regions with significant association between copy number and clinical response

Main problems

- DNA regions relevant for copy number not a priori defined
- Increase of resolution challenges multiple testing corrections

Van de Wiel et al. (VUmc)

DNA clustering plus testing

Increasing resolution

イロト イヨト イヨト イヨト

Collapsing

Collapse highly repetitious probes to one row

Loss of information can be controlled (Van de Wiel & Van Wieringen (2007), *Cancer Informatics*)

Handles locally 'too high' technical resolution

 \rightarrow Samples

Why clustering?

Collapsing: number of features reduces from several 100.000s to several 100s.

Resulting regions still possess a large degree of correlation.

Chin breast cancer data

- Chin et al. (2006), Cancer Cell
- Collapsing at 0.5% information loss: 383 regions
- 96 ER+, 49 ER- samples

Correlation between DNA regions

Correlation (Kendall's τ) heatmap for the Chin data set

Regions in order of chromosomal position. Colors represent correlations from -1 (cyan) to 1 (pink).

Van de Wiel et al. (VUmc)

DNA clustering plus testing

CBW, 2010 6 / 16

Cluster model

Aim

Find optimal partition of regions $\{1, \ldots, p\}$.

A: cluster of contiguous regions. x_A : possible realization of region data for cluster A. E.g. $A = \{1, 2, 3, 4\}$ and $x_A = (1, 1, 0, 1)^T$

Quadratic exponential model (Cox and Wermuth, 1994, Biometrika)

Model for cluster A (dropping sample index):

$$\log p_{\mathcal{A}}(x_{\mathcal{A}}; \alpha_{\mathcal{A}}, \vec{\beta}_{\mathcal{A}}, \gamma_{\mathcal{A}}) = \alpha_{\mathcal{A}} + \sum_{j \in \mathcal{A}} \beta_{\mathcal{A}, j} x_j + \gamma_{\mathcal{A}} \sum_{j < k, j, k \in \mathcal{A}} d_{jk} f(x_j, x_k),$$

where $f(x_j, x_k) = -1$, if $x_j \neq x_k$ and $f(x_j, x_k) = x_j x_k$, otherwise and d_{jk} is a distance function.

Cluster model

$$\log p_A(x_A; \alpha_A, \vec{\beta}_A, \gamma_A) = \alpha_A + \sum_{j \in A} \beta_{A,j} x_j + \gamma_A \sum_{j < k, j, k \in A} d_{jk} f(x_j, x_k),$$

Full log-likelihood model: sum over samples and over clusters (implying independence).

Given partition $\mathcal{A} = \{A_1, \dots, A_C\}$, $\alpha_A, \vec{\beta}_A, \gamma_A$ are easy to estimate by ML. Difficult parameter is the clustering, \mathcal{A} , itself.

Full model contains intrinsic trade-off for dividing cluster into two sub-clusters.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Cluster results Chin data set

< ∃ ►

Cluster results, 'validation'

Results are robust

Adjusted average Rand index very high: \approx 0.96 (10-fold CV)

Coincidental clustering is rare

- Clustering of two *independent* consecutive regions due to similar aberration pattern.
- Shuffle regions, consecutive regions from different chromosomes
- Then, consecutive regions are necessarily independent units
- Cluster algorithm should not cluster any regions
- Result on 383 regions: on average 382.2 clusters are formed.

< ロ > < 同 > < 回 > < 回 >

Hierarchical testing

FWER $\leq \alpha$ (Meinshausen (2008). *Biometrika*)

Van de Wiel et al. (VUmc)

DNA clustering plus testing

▶ < E ▶ E ∽ Q (CBW, 2010 11 / 16

Hierarchical testing: our setting

- Test statistic regions: χ^2 ; clusters: min p (max χ^2)
- Clustering permutation-invariant: testing using same samples

Results

Van de Wiel et al. (VUmc)

CBW, 2010 13 / 16

Results: power

- Eight clusters were detected at $\alpha = 0.05$
- Two of those do not contain any significant regions according to ordinary FWER correction (Holm)
- On the region level, the procedure is as powerful as an ordinary FWER correction (Holm)
- Benefit is even larger for data containing less samples

Discussion

Use of clustering for other purposes

- probe design for low-dimensional platforms (MLPA)
- clustering of samples
- prediction/classification

- Inclusion of amplification state in the cluster model
- Conditional vs. unconditional testing
- Software: www.few.vu.nl/~markvdw

- N

Discussion

Use of clustering for other purposes

- probe design for low-dimensional platforms (MLPA)
- clustering of samples
- prediction/classification

- Inclusion of amplification state in the cluster model
- Conditional vs. unconditional testing
- Software: www.few.vu.nl/~markvdw

References

- Chin, K. et al. (2006). Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. *Cancer Cell*, **10**, 529–541.
- Cox, D. R., and N. Wermuth (1994). A note on the quadratic exponential binary distribution. *Biometrika*, **81**, 403–408.
- Kim, K.I., E. Roquain and M.A. van de Wiel (2010). Spatial clustering of array CGH features in combination with hierarchical multiple testing. *Statist. Appl. Genet. Mol. Biol.*
- Meinshausen, N. (2008). Hierarchical testing of variable importance. *Biometrika*, **95**, 265–278.
- Van de Wiel, M.A., and W.N. van Wieringen (2007).CGHregions: dimension reduction for array CGH data with minimal information loss. *Cancer Informatics*, 2, 55–63.