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Integrating genetic and gene expression evidence into genome-wide association analysis of gene sets

Motivation

Objective

Dissect genetic and molecular mechanism underlying complex
(disease) traits.

Standard approaches:

(1) Genome wide association studies (GWAS): Correlations
between genetic variants and trait variation.

(2) Gene expression studies: correlations between gene expression
and trait variation.

Integration of both approaches for complementary evidence.
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Genome wide association studies

(1) Find single variants, independently contributing to disease.

(2) Issues with population structure, control for LD, etc...

(3) Genetic variations have been identified for a wide variety of
common complex diseases (GWAS catalog).

(4) Missing heritability: genetic variation explains 5% of hight
variation.

(5) Very weak predictive power.
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(2) Sensitive to many environmental factors.

(3) Is a complex trait itself.

(4) Causal versus reactive.

(5) Can we find evidence that expression variation predictive of
trait variation is genetic.
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Expression quantitative trait loci eQTL

Given expression data and genetic variation data on a set of
individuals:

eQTLs or eQTNs are SNPs or loci that association
with gene expression.

(1) SNPs associated with complex traits are enriched in eQTLs.

(2) This association is robust across eQTL thresholds.

(3) Can help with causal versus reactive.

(4) Need expression data and SNP data from same individuals.

(5) Missing heritability still a problem.
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may come from the sum of many alleles with small effect.

A possible model is of pathway disruption causing complex disease.

Mootha et al 2005
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Advantages of pathway based methods

(1) Cellular processes involving the interaction of multiple genetic
components are better modeled using pathway-based
approaches.

(2) Capture joint effect of multiple loci and better capture small
changes across many loci.

(3) False positives can be reduced.

(4) Facilitates interpretation of the results from association
studies.
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Inputs

Gene expression data X1, ...,Xn and corresponding (Categorical)
phenotypic labels: Y1, ....,Yn, with Xi ∈ RN .

SNP data S1, ...,Sm and corresponding (Categorical) phenotypic
labels: Y1, ....,Ym, with Si a V -dimension categorical vector.
Collections of a priori defined gene sets.
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Evidence of differential expression

For each gene, 1, ...,N, compute a differential expression score

ri =
µ̂0 − µ̂1√

σ̂21/n1 + σ̂22/n2

.

Use any correlation statistic: t-statistic, shrinkage models, effect
size estimates....
Result: {r1, ..., rN}.
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The method

What to do if only given p-values

For each gene, 1, ...,N, you are given {p1, ..., pN}. How do you
calibrate p-value to provide evidence ?

Odds ratio

ej =
fj(sj | M1)

fj(sj | M2)
.

P-value fallacy p-value of .001 6⇒ 1/.0001 = 1, 000 more evidence.
P-value calibration

B(pj) =

{
= 1

−epj log(pj )
if pj ∈ (0, 1e ]

1 otherwise.



Integrating genetic and gene expression evidence into genome-wide association analysis of gene sets

The method

What to do if only given p-values

For each gene, 1, ...,N, you are given {p1, ..., pN}. How do you
calibrate p-value to provide evidence ?
Odds ratio

ej =
fj(sj | M1)

fj(sj | M2)
.

P-value fallacy p-value of .001 6⇒ 1/.0001 = 1, 000 more evidence.
P-value calibration

B(pj) =

{
= 1

−epj log(pj )
if pj ∈ (0, 1e ]

1 otherwise.



Integrating genetic and gene expression evidence into genome-wide association analysis of gene sets

The method

What to do if only given p-values

For each gene, 1, ...,N, you are given {p1, ..., pN}. How do you
calibrate p-value to provide evidence ?
Odds ratio

ej =
fj(sj | M1)

fj(sj | M2)
.

P-value fallacy p-value of .001 6⇒ 1/.0001 = 1, 000 more evidence.

P-value calibration

B(pj) =

{
= 1

−epj log(pj )
if pj ∈ (0, 1e ]

1 otherwise.



Integrating genetic and gene expression evidence into genome-wide association analysis of gene sets

The method

What to do if only given p-values

For each gene, 1, ...,N, you are given {p1, ..., pN}. How do you
calibrate p-value to provide evidence ?
Odds ratio

ej =
fj(sj | M1)

fj(sj | M2)
.

P-value fallacy p-value of .001 6⇒ 1/.0001 = 1, 000 more evidence.
P-value calibration

B(pj) =

{
= 1

−epj log(pj )
if pj ∈ (0, 1e ]

1 otherwise.



Integrating genetic and gene expression evidence into genome-wide association analysis of gene sets

The method

Single SNP association score

Use your favorite single-SNP association score

(1) genotype-based chi-square statistic

(2) allele-based chi-square statistic

(3) frequency differences in major/minor alleles.

Simulations suggest genotype-based chi-square test (more power).
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SNP Set association score

SNPs need to be assigned to a gene and then a summary score
needs to be computed for the SNPs assigned to the gene.

Assignment: All SNPs within 1kB upstream and down stream of
TSS.
Summary statistic: Default is maximum. Weighted average. Bayes
factors.
Result: {s1, ..., sN}.
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SNP Set association score

(1) Max score – the region harbors only one risk variant; more
effectively eliminate the negative effects of correlation
structure between SNPs. one causal variant but markers with
strong LD.

(2) Weighted mean score – multiple independent risk variants.
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Gene association score

Given: {r1, ..., rN} and {s1, ..., sN}.

(1) impose directionality on SNP evidence: si ≡ si × sign(ri ).

(2) normalize

r̃i =
ri∑N

j=1 |rj | × I[sign(ri ) = sign(rj )]

s̃i =
si∑N

j=1 |rj | × I[sign(si ) = sign(sj )]
.

(3) combine evidence ci = s̃i + r̃i .
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The method

eQTL setting (in progresss)

The previous gene association score can be thought of as

cj = e(Y | Sj) + e(Y | Xj).

If we have expression and genetic data on same individuals we can
adjust evidence

cj = e(Y | Sj) + P(Y | Xj)× e(Xj | Sj).

This idea can be used for other genomic features.
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Gene set association score

For a gene set S with h genes a the rank ordered association scores
{c(1), ..., c(N)} compute running association score

RASS(i) =
1

Ns

i∑
j=1

|cj | × I(j ∈ S)− 1

N − h
I(j /∈ S),

with NS =
∑N

j=1 |cj | × I(j ∈ S).

The association score AS(S) is the maximum deviation of
{RASS(i)} from zero.
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The method

Statistical significance and adjustment for multiple
hypothesis testing

Use permutation procedure and FDR corrections. This
automatically corrects for linkage structure and population.
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Simulation studies

We compared four methods

(1) GSAA – SNP and expression data

(2) GSEA – only expression data

(3) GSEA-SNP – only SNP data

(4) two step regression model – two step regression model, filter
genes with un/weakly associated SNPs, regression on
remaining SNPs.
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Simulated data

We generated simulated expression data and SNP data

(1) SNP data was generated using SIMLA. The parameters
correspond to marker and disease placement, locus
heterogeneity, disequilibrium between markers and between
markers and disease loci.

(2) Expression data was simulated using normals.

http://www.chg.duke.edu/research/simla.html
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Simulations

Simulated data

(1) 1000 genes, first 20 causal, 3 SNPs in each causal gene with
the second marker is in LD with the disease variant with
varying R2.

(2) 100 gene sets, the first set is causal including 5-20% of causal
genes.
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Real data

TCGA

The Cancer Genome Atlas

An excellent source for integrated genomic data for various tumors,
currently
glioblastoma multiforme, ovarian (serous cystadenocarcinoma) and
lung (squamous carcinoma).

Collection of clinical, expression, SNP, copy number, and
high-throughput sequencing data.
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SNP data: 205 tumor samples and 89 normal samples

357 ”canonical pathways” from MSigDB and 658 GO gene sets.
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Real data

TCGA

Expression and association signatures

For P53PATHWAY:

(1) 5 genes TP53, RB1, E2F1, ATM, and MDM2 show evidence
in our single-SNP analysis.

(2) 6 genes TP53, RB1, CDK2, CDK4, PCNA, p21 show evidence
in our expression analysis.

Top ranked genes with respect to combined expression and SNP
association:

(1) ADAM12 – evidence of transcriptional regulation.

(2) CDKN2A – locus associated in recent GWA study.
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