

An algorithm to detect Copy Number Aberrations in cancer genomes of tumour specimens.

Arief Gusnanto, *Stefano Berri*, Henry M. Wood and Pamela Rabbitts

The cancer genome is often aneuploid

Hartwell and Kastan. Science, 1994

Detecting abnormalities

Why?

- Molecular characterisation and classification of tumours
- Diagnostic, prognostic and predictive tool
- Understand the biology of cancer

How?

- CGH
- aCGH (BAC or oligo)
- SNP microarray
- "NextGen" Sequencing
 - ✓ Tuneable resolution/cost
 - ✓ Re-use of data
 - ✓ Flexible platform
 - ✓ Technical independence Test Control
 - ✓ Might become very cheap

Copy number by "NextGen" Sequencing

"NextGen" sequencing and reads mapping.

Counting number of sequences for each window

Counting number of sequences for each window

Genomic location

Toward the real data

Distribution of read counts. Simulated Data, 3M reads

Ratio Test/Control

Copy number from simulated Data

Ratio Test/Control

Copy number from simulated Data

Copy number from simulated Data

Different number of total reads

Total number of reads varies.

Normalization. A crucial step

Normalization. A crucial step

Copy number from simulated data after median normalization.

The cancer genome is often aneuploid

Many amplifications and deletions!

Hartwell and Kastan. Science, 1994

Patient's tumour samples

Contamination with stroma, inflammatory cells...

Lung tumour

The real samples. A lot noisier

Aligning artefacts

- Some sequences cannot be aligned (repeated regions)
- GC content bias
- Unequal number of total reads.
- Extra noise of unknown origin

The median might be meaningless

Median normalisation

Chromosome 3, Mbp

Trade resolution for noise

Patient's sample, segmented data

Ratio (Copy num)

Ratio (Copy num)

Patient's sample, segmented data

Patient's sample, segmented data

Keep high resolution and normalise

Discrete normalization. Patient's specimens 9 ß 4 c \sim 0 5 100 50 150 200 0

Chromosome 3, Mbp

- Develop a novel normalisation method for "NextGen" data that can cope with
 - ✓ Highly abnormal genomes
 - ✓ Tumour samples contaminated by normal cells
- We can estimate contamination percentage.

- Contamination is allowed, but otherwise the tumour should be homogeneous.
- Process might require human supervision when calling discrete states.

Department of Statistics, School of Mathematics Arief Gusnanto

Leeds Institute of Molecular Medicine, St. James's University Hospital

Pamela Rabbitts, Henry M. Wood Catherine Daly, Ornella Belvedere Joanne Morgan, Graham Taylor

Yorkshire Cancer Research