Introduction to Kernel Methods I

Partha Niyogi Mikhail Belkin

The University of Chicago

Interdisciplinary Subject

Variously called

- Pattern Recognition
- Machine Learning
- Classification/Regression

Many disciplines

- Engineering
- Computer Science
- Statistics
- Mathematics

$$X = \begin{cases} Pattern Space \\ Instance Space \\ Example Space \end{cases} \quad \mathbb{R}^n, \mathcal{M}, \{-1, +1\}^n, \Sigma^* \\ \text{Example Space} \end{cases}$$
$$Y = \begin{cases} Label Space \\ Prediction Space \\ Response Space \end{cases} \quad \mathbb{R}^n, \{-1, +1\}, \{1, \dots, n\}$$

Examples (x, y)

A Digit Recognition Example

Predict class of new data point.

A Face Recognition Example

Predict class of new data point.

Finance

$X = \Sigma^*$

He ran from there with his money.

He his money with from there ran.

Learn $g: \Sigma^* \to \{-1, 1\}$.

P on
$$X \times Y$$
 $X = \mathbb{R}^N$ $Y = \{-1, 1\}$ or \mathbb{R}

(x_i, y_i) labeled examples

find $f: X \to Y$ III Posed

$Y = \{-1, +1\}$: Misclassification Loss

$$V(f(x), y) = \begin{cases} 1 & \text{if } f(x) \neq y \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbf{E}\left[V(f(x),y)\right] = \Pr[f(x) \neq y] = \ \text{Average Error}$$

Suppose *P* is known to you. Suppose all measurable functions are available.

$$\min_{f} \mathbf{E} \left[V(f(x), y) \right] = \Pr[f(x) \neq y]$$
$$f_{*}(x) = \begin{cases} +1 & \Pr[y = +1 \mid x] \ge \frac{1}{2} \\ -1 & \text{otherwise} \end{cases}$$

is the minimizer and **Bayes optimal** classifier.

$$V(f(x), y) = (y - f(x))^2$$

Minimizer of least squares is the regression function

$$f_*(x) = \mathbf{E}\left[y \,|\, x\right] = \int_Y y P(y|x) dy$$

sign $(f_*(x))$ = Bayes Optimal Classifier

Choose a class \mathcal{F} of functions $X \mapsto Y$

Solve

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} V(f(x_i), y_i)$$

$$\mathcal{F} = \{\mathbf{w} \cdot \mathbf{x} \mid \mathbf{w} \in \mathbb{R}^k\}$$
$$\min_{\mathbf{w}} \sum_{i} (y_i - (\mathbf{w} \cdot \mathbf{x}_i))^2$$

$$\min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2$$

Differentiating with respect to w and setting to 0,

$$\mathbf{X}^T \mathbf{X} \mathbf{w}_* = \mathbf{X}^T y$$

What if $\mathbf{X}^T \mathbf{X}$ is not full rank, i.e., not invertible?

 $H = \{ \mathbf{w} \mid \mathbf{w} \text{ is minimizer} \}$

Pick

$$\mathbf{w}_* = \min_{\mathbf{w} \in H} \mathbf{w} \cdot \mathbf{w}$$

$$\mathbf{w}_* = \arg\min_{\mathbf{w}} \frac{1}{n} \sum_i \left(y_i - \mathbf{w} \cdot \mathbf{x}_i \right)^2 + \gamma \mathbf{w} \cdot \mathbf{w}$$

$$w_* = [\mathbf{X}^T \mathbf{X} + \gamma I]^{-1} \mathbf{X}^T \mathbf{y}$$

Ridge Regression

$$\sum_{i=1}^{n} V(\mathbf{w} \cdot \mathbf{x}_i + b, y_i) + \gamma \mathbf{w} \cdot \mathbf{w}$$

where V is the hinge loss given by

$$V(f(x), y) = \begin{cases} 0 & \text{if } yf(x) \ge 1\\ (1 - yf(x)) & \text{otherwise} \end{cases}$$

Quadratic Program

$$\underset{\{\mathbf{w},\xi_i\}}{\operatorname{argmin}} \mathbf{w} \cdot \mathbf{w} + \gamma \sum_{i=1}^n \xi_i$$

subject to

$$y_i \left(\mathbf{w} \cdot \mathbf{x}_i + b \right) \ge 1 - \xi_i$$
$$\xi_i \ge 0$$

One can show

$$\mathbf{w}^* = \sum \alpha_i x_i$$

We would like a richer class \mathcal{F} of functions with which to make predictions.

What properties would we like from such a class?

Many candidates: polynomials, trigonometric functions, continuous functions, differentiable functions, etc.

Property 1

It should be a rich class with good approximation power.

Property 2

 \mathcal{F} should have linear structure.

Property 3

We would like it to have inner product so that we can take projections as we have seen for linear functions, i.e. Hilbert space (complete vector space with inner product).

$\langle f,f\rangle\geq 0$

$$\langle f, \alpha g + \beta h \rangle = \alpha \langle f, g \rangle + \beta \langle f, h \rangle$$

Suppose $D_1 \mapsto f_{D_1}$ and $D_2 \mapsto f_{D_2}$

If $||f_{D_1} - f_{D_2}||$ is small, then f_{D_1} and f_{D_2} will make similar predictions at each point x, i.e., $|f_{D_1}(x) - f_{D_2}(x)|$ will be small. Suppose $D_1 \mapsto f_{D_1}$ and $D_2 \mapsto f_{D_2}$

If $||f_{D_1} - f_{D_2}||$ is small, then f_{D_1} and f_{D_2} will make similar predictions at each point x, i.e., $|f_{D_1}(x) - f_{D_2}(x)|$ will be small.

 $eval_x: \mathcal{F} \to \mathbb{R}$ given by $eval_x[f] = f(x)$

$$\sup_{f} \frac{|eval_x(f)|}{\|f\|} < \infty$$

Suppose $D_1 \mapsto f_{D_1}$ and $D_2 \mapsto f_{D_2}$

If $||f_{D_1} - f_{D_2}||$ is small, then f_{D_1} and f_{D_2} will make similar predictions at each point x, i.e., $|f_{D_1}(x) - f_{D_2}(x)|$ will be small.

 $eval_x: \mathcal{F} \to \mathbb{R}$ given by $eval_x[f] = f(x)$

$$\sup_{f} \frac{|eval_x(f)|}{\|f\|} < \infty$$

$$\sup_{x \in X} |f_{D_1}(x) - f_{D_2}(x)| \le C ||f_{D_1} - f_{D_2}||$$

Any Hilbert Space where the evaluation functionals are bounded is a Reproducing Kernel Hilbert Space.

Mercer Kernel X is a compact metric space. $K : X \times X \rightarrow \mathbb{R}$ is a continuous kernel such that (i) K(x,y) = K(y,x)(ii) for all $x_1, \dots, x_n \in X$,

 $\mathbf{K}_{ij} = K(x_i, x_j)$

is positive semi-definite.

$$X \subset \mathbb{R}^n : K(a,b) = e^{-\frac{||a-b||^2}{\sigma^2}}$$

$$X \subset \mathbb{R}^n : K(a,b) = (1 + a \cdot b)^d$$

$X = \{1, \dots, k\} : K \text{ is } k \times k \text{ positive semi-definite matrix} \}$

$$X = S^1 : K(\theta, \phi) = \sum_{n=0}^{\infty} e^{-n^2 t} \sin(n\theta) \sin(n\phi)$$

Introduction to Kernel Methods I – p. 23

- **1. Begin with** $H_0 = \{K_x \mid x \in X\}$
- 2. Take finite linear combinations
 - $H_1 = \{ \text{ finite linear combinations of functions in } H_0 \}$
- 3. Put an inner product structure

$$\langle \sum_{i} \alpha_{i} K_{x_{i}}, \sum_{j} \beta_{j} K_{y_{j}} \rangle = \sum_{i,j} \alpha_{i} \beta_{j} K(x_{i}, y_{j})$$

4. H_K is the completion of H_1 .

Linear kernel example

$$x, y \in X = \mathbb{R}^n$$
$$K(x, y) = x \cdot y$$

$$K_x(y) = x \cdot y$$

$$\sum_{i} \alpha_i K_{x_i}$$
 also a linear function

H_K is the set of linear functions

$$f(x) = \langle f, K_x \rangle$$

Therefore, by Schwarz Inequality,

 $|f(x)| \le ||f|| ||K_x|| = ||f|| (K(x,x))^{\frac{1}{2}} \le K(x,x)\kappa$ where $\kappa^2 = \sup_{x \in X} K(x,x)$.

In other words, if ||f - g|| is small, then |f(x) - g(x)| is small.

Let μ be a probability measure supported on X.

$$L^{2}(\mu) = \left\{ f \mid \int |f|^{2} d\mu < \infty \right\}$$

 $L_K: L^2(\mu) \mapsto L^2(\mu)$ is an integral operator given by

$$L_K[f] = g = \int f(y)K(x,y)d\mu(y)$$

Corresponding Eigensystem

$$L_K \phi_i = \lambda_i \phi_i$$

Functions in L^2 can be written as $f = \sum_i \alpha_i \phi_i$ where $\sum_i \alpha_i^2 < \infty$.

Functions in H_K can be written as $f = \sum_i \alpha_i \phi_i$ where $\sum_i \frac{\alpha_i^2}{\lambda_i} < \infty$

Although λ_i and ϕ_i depend on the measure μ , the RKHS H_K does not.

For every Mercer kernel *K* there exist many feature maps

 $\psi:X\to H$

where H is a Hilbert space such that

 $K(x,y) = \langle \psi(x), \psi(y) \rangle$

$\psi: X \to H_K$

where $\psi(x) = K_x$.

Then,

$$\langle \psi(x), \psi(y) \rangle = \langle K_x, K_y \rangle = K(x, y)$$

$$\psi: X \to l_2$$

where

$$\psi(x) = (\sqrt{\lambda_1}\phi_1(x), \dots, \sqrt{\lambda_i}\phi_i(x), \dots)$$

$$\langle \psi(x), \psi(y) \rangle_{l_2} = \sum_{i=1}^{\infty} \lambda_i \phi_i(x) \phi_i(y) = K(x, y)$$

(Spectral theorem)