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Interdisciplinary Subject

Variously called
´ Pattern Recognition

´ Machine Learning

´ Classification/Regression

Many disciplines
´ Engineering

´ Computer Science

´ Statistics

´ Mathematics
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Learning from examples

X =







Pattern Space

Instance Space

Example Space

R
n,M, {−1,+1}n,Σ∗

Y =







Label Space

Prediction Space

Response Space

R
n, {−1,+1}, {1, . . . , n}

Examples (x, y)
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A Digit Recognition Example

Examples:

Predict class of new data point.
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A Face Recognition Example

Predict class of new data point.
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Finance
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Grammatical Inference

X = Σ∗

He ran from there with his money.

He his money with from there ran.

Learn g : Σ∗ → {−1, 1}.
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Pattern Recognition

P on X × Y X = R
N Y = {−1, 1} or R

(xi, yi) labeled examples

find f : X → Y Ill Posed
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Loss Functions

Y = {−1,+1}: Misclassification Loss

V (f(x), y) =

{

1 if f(x) 6= y

0 otherwise

E [V (f(x), y)] = Pr[f(x) 6= y] = Average Error
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Bayes Optimal

Suppose P is known to you.
Suppose all measurable functions are available.

min
f

E [V (f(x), y)] = Pr[f(x) 6= y]

f∗(x) =

8

<

:

+1 Pr[y = +1 | x] ≥ 1

2

−1 otherwise

is the minimizer and Bayes optimal classifier.
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Least Squares

V (f(x), y) = (y − f(x))2

Minimizer of least squares is the regression function

f∗(x) = E [y |x] =

∫

Y

yP (y|x)dy

sign (f∗(x)) = Bayes Optimal Classifier
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Empirical Risk Minimization

Choose a class F of functions X 7→ Y

Solve

min
f∈F

1

n

n
∑

i=1

V (f(xi), yi)
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Ordinary Least Squares

F = {w · x | w ∈ R
k}

min
w

∑

i

(yi − (w · xi))
2

min
w

‖y − Xw‖2

Differentiating with respect to w and setting to 0,

XTXw∗ = XT y
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Minimum Norm Solution

What if XTX is not full rank, i.e., not invertible?

H = {w | w is minimizer}

Pick
w∗ = min

w∈H
w · w
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Regularized Least Squares

w∗ = arg min
w

1

n

∑

i

(yi − w · xi)
2 + γw · w

w∗ = [XTX + γI]−1XTy

Ridge Regression
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Support Vector Machines

n
∑

i=1

V (w · xi + b, yi) + γw · w

where V is the hinge loss given by

V (f(x), y) =

8

<

:

0 if yf(x) ≥ 1

(1 − yf(x)) otherwise

Introduction to Kernel Methods I – p. 16



Quadratic Program

argmin
{w, ξi}

w · w + γ

n
∑

i=1

ξi

subject to

yi (w · xi + b) ≥ 1 − ξi

ξi ≥ 0

One can show

w∗ =
∑

αixi
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Beyond linear functions

We would like a richer class F of functions with which
to make predictions.

What properties would we like from such a class?

Many candidates: polynomials, trigonometric
functions, continuous functions, differentiable
functions, etc.
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Desirable Properties

Property 1

It should be a rich class with good approximation
power.

Property 2

F should have linear structure.

Property 3

We would like it to have inner product so that we can
take projections as we have seen for linear functions,
i.e. Hilbert space (complete vector space with inner
product).

〈f, f〉 ≥ 0

〈f, αg + βh〉 = α〈f, g〉 + β〈f, h〉
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Evaluation Functionals Bounded

Suppose D1 7→ fD1
and D2 7→ fD2

If ‖fD1
− fD2

‖ is small, then fD1
and fD2

will make
similar predictions at each point x,
i.e., |fD1

(x) − fD2
(x)| will be small.

evalx : F → R given by evalx[f ] = f(x)

sup
f

|evalx(f)|

‖f‖
<∞

sup
x∈X

|fD1
(x) − fD2

(x)| ≤ C‖fD1
− fD2

‖

Introduction to Kernel Methods I – p. 20



Evaluation Functionals Bounded

Suppose D1 7→ fD1
and D2 7→ fD2

If ‖fD1
− fD2

‖ is small, then fD1
and fD2

will make
similar predictions at each point x,
i.e., |fD1

(x) − fD2
(x)| will be small.

evalx : F → R given by evalx[f ] = f(x)

sup
f

|evalx(f)|

‖f‖
<∞

sup
x∈X

|fD1
(x) − fD2

(x)| ≤ C‖fD1
− fD2

‖

Introduction to Kernel Methods I – p. 20



Evaluation Functionals Bounded

Suppose D1 7→ fD1
and D2 7→ fD2

If ‖fD1
− fD2

‖ is small, then fD1
and fD2

will make
similar predictions at each point x,
i.e., |fD1

(x) − fD2
(x)| will be small.

evalx : F → R given by evalx[f ] = f(x)

sup
f

|evalx(f)|

‖f‖
<∞

sup
x∈X

|fD1
(x) − fD2

(x)| ≤ C‖fD1
− fD2

‖

Introduction to Kernel Methods I – p. 20



Theorem

Any Hilbert Space where the evaluation functionals
are bounded is a Reproducing Kernel Hilbert Space.
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Reproducing Kernel Hilbert Space

Mercer Kernel
X is a compact metric space.
K : X ×X → R is a continuous kernel
such that
(i) K(x, y) = K(y, x)
(ii) for all x1, . . . , xn ∈ X,

Kij = K(xi, xj)

is positive semi-definite.
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Examples

X ⊂ R
n : K(a, b) = e−

||a−b||2

σ2

X ⊂ R
n : K(a, b) = (1 + a · b)d

X = {1, . . . , k} : K is k × k positive semi-definite matrix

X = S1 : K(θ, φ) =
∞
∑

n=0

e−n2t sin(nθ) sin(nφ)
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Construction

1. Begin with H0 = {Kx | x ∈ X}

2. Take finite linear combinations

H1 = { finite linear combinations of functions in H0}

3. Put an inner product structure

〈
∑

i

αiKxi
,
∑

j

βjKyj
〉 =

∑

i,j

αiβjK(xi, yj)

4. HK is the completion of H1.
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Linear kernel example

x, y ∈ X = R
n

K(x, y) = x · y

Kx(y) = x · y

∑

i

αiKxi
also a linear function

HK is the set of linear functions
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Reproducing Property

f(x) = 〈f,Kx〉

Therefore, by Schwarz Inequality,

|f(x)| ≤ ‖f‖‖Kx‖ = ‖f‖ (K(x, x))
1

2 ≤ K(x, x)κ

where κ2 = supx∈X K(x, x).

In other words, if ‖f − g‖ is small, then |f(x) − g(x)| is
small.
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Another view

Let µ be a probability measure supported on X.

L2(µ) =

{

f

∣

∣

∣

∣

∫

|f |2dµ <∞

}

LK : L2(µ) 7→ L2(µ) is an integral operator given by

LK [f ] = g =

∫

f(y)K(x, y)dµ(y)

Corresponding Eigensystem

LKφi = λiφi
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RKHS

Functions in L2 can be written as f =
∑

i αiφi where
∑

i α
2

i <∞.

Functions in HK can be written as f =
∑

i αiφi where
∑

i
α2

i

λi
<∞

Although λi and φi depend on the measure µ, the RKHS HK does not.
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Feature Map Interpretation

For every Mercer kernel K there exist many feature
maps

ψ : X → H

where H is a Hilbert space such that

K(x, y) = 〈ψ(x), ψ(y)〉
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Feature Map Examples

ψ : X → HK

where ψ(x) = Kx.

Then,

〈ψ(x), ψ(y)〉 = 〈Kx, Ky〉 = K(x, y)
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Another Feature Map

ψ : X → l2

where

ψ(x) = (
√

λ1φ1(x), . . . ,
√

λiφi(x), . . . )

〈ψ(x), ψ(y)〉l2 =
∞
∑

i=1

λiφi(x)φi(y) = K(x, y)

(Spectral theorem)
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