Inferring deregulation networks of copy-number driven expression in cancer sub-types

Yinyin Yuan

Florian Markowetz Lab
Cambridge Research Institute, Cancer Research UK
Department of Oncology, University of Cambridge

Introduction

Regulatory network of CN-driving Expression helps identify hotspots

Deregulation network leads to the discovery of subtype-specific primary aberrations

Aim

To reveal the deregulation network between subgroups of samples

Outline

- One step inference of the deregulation network
- Introduce DANCE: a sparse inference model
- Experiments on simulated data and cancer datasets

Mistakes in network influence outcome get amplified with two networks

DANCE

Deregulation Analysis of Networks between Copy-number and Expression

DANCE

Expression data Copy number data

Sparse coefficients

Condition 2 Condition 1

Y₁

 Y_2

X₁ X₁

 X_2 0

 B^{c}

X

Conserved network

 B^d

Deregulated network

$$\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} X_1 & X_1 \\ X_2 & 0 \end{bmatrix} \begin{bmatrix} B^c \\ B^d \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \end{bmatrix}$$

$$Y \qquad X' \qquad B$$

Objective function

 $argmin_B || Y - X'B ||_2 + \lambda ||B||_1$,

Experiments on HMM simulated data: The sparse method outperforms others in most situations

- Data: HMM model for copy number simulation
- Sparse conserved and deregulation networks: coefficients from normal distributions
- Methods to compare:

 Gaussian Graphical Model,
 Partial Least Squares,
 DANCE.
- Prior knowledge: number of edges in both conserved and deregulation networks.

Hotspots responsible for pathway deregulation

ER pos vs. ER neg

21q22 Amp with few *cis*changes

Concomitant CN signatures

8p12
Amp in 32%
tumours
Neutral in ER-

Hotspots responsible for pathway deregulation

CACNA1E

CANCER RESEARCH

Hotspots either exhibit imbalance MAPK signaling path_{ua} between subtypes or a phenotypical consequence on expression

Experiments on three breast cancer datasets: Good overlap among three datasets shows the robustness of the algorithm

Overlap of hotspots

Deregulation in ER- breast cancer based on 12 KEGG pathways

Summary

- Introduce DANCE, a statistical package for the inference of deregulation network in disease subtypes
- The sparse model is efficient in large-scale data modelling
- DANCE shows good accuracy in simulated experiment and robustness on real biological data
- Hotspots leading to deregulated pathways exhibit genomic imbalance or imply trans-regulations

Acknowledgement Cambridge Research Institute, CRUK

Christina Curtis
Suet-Feung Chin
Oscar M. Rueda

Carlos Caldas group Simon Tavare group James Brenton group Bioinformatics Core **CRI Markowetz Lab**

Florian Markowetz
Roland Schwarz
Jack Rose
Mauro A. A. Castro
Camille Terfve
Xin Wang

Thank you!

Questions?

