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1. Focus on modeling

relevant things:

Unsupervised multi-view learning
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Relevance from co-occurring data: 

in search for cancer-related genes



Decompose multiple “views” into 
view-specific and shared components

• Motivation #1: Shared or dependent components 
are relevant for both sources

• Motivation #2: Unknown type of noise (=source-
specific signal) can be discarded

• Small samples => From dependency 
maximization to generative models
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Local Dependent Components

• Assume dependencies 
are linear only locally

• DP-mixture of 
Bayesian canonical 
correlation analyzers

• Marginalize out the 
specific latent sources

Klami and Kaski, ICML 2007



Under simplifying assumptions, the shared 

signal can be extracted by combining 

standard CCA components (fast!)
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Preprocessing that preserves what 

is shared/dependent 

Tripathi et al, BMC Bioinformatics, 2008

feat 1 feat 2



Cell cycle regulation

Baseline : Simple column wise concatenation of all data matrices

PCA :  PCA of column wise concatenation of all data matrices



Problems with two-view learning

Strength of CCA-type approaches is 

invariance to transformations: CCA 

computes correlations in an optimized 

subspace

This turns into a weakness for small data 

sets: it is too flexible.

=> use prior knowledge to restrict the 

subspace



Standard probabilistic CCA
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Dependency detection with 

similarity constraints

Similarity-constrained CCA:

Setting suitable priors for T gives constraints
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Lahti et al, MLSP2009



Dependencies between expression 

and structural variation
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Lahti et al, MLSP2009



Cancer study

Lahti et al, MLSP2009







Kaski, et al, IEEE/ACM TrCBB 2005

Dependency exploration through associative clustering: Search for

regularities and exceptions in gene function between mouse and man 

From linear projections to 

clusterings. Associative clustering -

of mice and men



Non-parametric dependencies 

between clusters

Triply infinite two-domain mixture model

Clusters x and y

separately, and

finds components

that describe their

dependencies

Rogers et al, Machine Learning 2010



Summary on multi-view learning

• Decomposition into shared and view-

specific components

• Usable as a general-purpose 

preprocessing step

• Can be extended in several ways

• Nonparametric methods

• Associative clustering

• Regularize

• Application to cancer studies



2. Get more data.

REx: Search for Relevant 

Experiments
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Querying collections

“leukemia”

“leukemia”

“cancer”

“CML”

“Crohn’s disease”

“CLL”

“leukemia”

(leukemia)

“CML”

“Crohn’s disease”

“CLL”(leukemia)Data-driven query

Annotation-driven query:

Caldas et al, Bioinformatics, 2009



What is interesting/relevant?

(i) Differential expression (Bring in covariates:

treatment vs control). Why?

- The experimenter designed the controls to 

separate interesting variation

- The differences are more comparable 

across labs/situations

(ii) Bring in a model

of biology



Modeling of an experiment collection

Task: Learn a decomposition of experiments 

into biological processes, given a database 

of experiments.

Solution in REx1.0:

•Assume experiments are bags of gene set 

activations (sets=biological constraints)

•Probabilistic overlapping components by 

topic models (data-driven modeling given 

the constraints) 
Caldas et al, Bioinformatics, 2009



•Extensively used in bag-of-words text data.

”Topic Model” / Latent variable model

“Species” “Global” “Climate” “Evolution”“Selection”

Topic 1 Topic 2

“Soccer”

Document 1 Document 2 Document 3

•Called Latent Dirichlet Allocation (LDA) or discrete PCA (dPCA)

Caldas et al, Bioinformatics, 2009



LDA and GSEA

Estimate Θ and Φ with collapsed Gibbs sampler.

GS 1 GS 2 GS 3 GS 5GS 4

Topic z2Topic z1 Topic z3

Comparison d

Θd

Φz

“leukemia” vs “healthy”

Caldas et al, Bioinformatics, 2009



Components of

experiments

Caldas et al, Bioinformatics, 2009



Components of

experiments

Caldas et al, Bioinformatics, 2009



Retrieval of relevant experiments

Task: Find experiments in which the same 

biological processes are active.

≈ find experiments where the same 

components are active

Convenient given the probabilistic model. 

Rank the experiments by

p(query|experiment)

Caldas et al, Bioinformatics, 2009



Visualization of results:

nonlinear projection

Caldas et al, Bioinformatics, 2009



Nonlinear projection

Task: Position each experiment on the 

plane such that relevant experiments are 

close to queries.

Solution:

Use p(query|experiment) to define 

relevance

Ask the relative cost of misses and false 

positives from the user

Minimize total cost by NeRV
Caldas et al, Bioinformatics, 2009



Neighbor retrieval visualizer NeRV

Optimizes a user-defined tradeoff between 

precision and recall.

Venna and Kaski, AISTATS 2007, Venna et al, JMLR 2010



Does really work

http://www.cis.hut.fi/projects/mi/software/dr

edviz/
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Venna and Kaski, AISTATS 2007; Venna et al, JMLR 2010 

http://www.cis.hut.fi/projects/mi/software/dredviz/
http://www.cis.hut.fi/projects/mi/software/dredviz/


Query with “malignant melanoma” vs “normal” comparison.

Querying the Model/Database

Rank Comparison (... vs “normal”)

1 Bladder Carcinoma

2 Vulvar Intraepithelial Neoplasia

3 Hyperparathyroidism

4 Lung (smoker)

5 Bladder Carcinoma

6 Bladder Carcinoma

7 Infiltrating Ductal Carcinoma

8 Prostate Cancer

9 Breast Carcinoma

10 Esophageal Adenocarcinoma

Caldas et al, Bioinformatics, 2009



Retrieval results

• 105 normal vs. disease comparisons: 

„cancer‟ (27) or „not cancer‟ (78)

• Query with cancer comparisons

• Compare to random baseline
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Summary of REx: Retrieval of 

relevant Experiments

• Modeling of an experiment: Differential 

expression of biological processes (~gene 

sets)

• “Topic model” of bags of differentially 

expressed gene sets

• Probabilistic retrieval of relevant 

experiments, given the model

• Model-based visualization of results
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