### CHASM:

# Cancer-specific high-throughput annotation of somatic mutations

Rachel Karchin, Ph.D.

Department of Biomedical Engineering Institute for Computational Medicine

Johns Hopkins University

### **CHASM Overview**

- Machine learning method to identify "driver" missense mutations
- High-throughput
- Automated
- No time-consuming calculations
- High coverage
- -Classifications based on sequence only
- -Protein structure, interactions, pathways not used
- Prioritization for functional studies

# Data deluge from whole-exome sequencing



# Classic approach to finding driver genes

### Significantly mutated genes



Baudot et al. 2009

### Patterns of somatic mutation in human cancer genomes

Greenman et al. 2007

#### The Genomic Landscapes of Human Breast and Colorectal Cancers

Wood et al. 2007

# Classic approach to finding driver genes

#### Recurrent mutations



# Limitations to the classic approach

Driver genes may not be significantly mutated

Driver mutations may not be recurrent

#### Confirmed somatic mutations in COSMIC



#### Confirmed somatic mutations in COSMIC



 Methods that predict driving mutations and genes independent of frequency needed

## Bioinformatics methods?

Nucleic Acids Res. 2007 Jul;35(Web Server issue):W595-8. Epub 2007 May 30.

CanPredict: a computational tool for predicting cancer-associated missense mutations.

Kaminker JS, Zhang Y, Watanabe C, Zhang Z.

Cancer Res. 2008 Mar 15;68(6):1675-82.

Prediction of cancer driver mutations in protein kinases.

Torkamani A, Schork NJ.

Nucleic Acids Res. 2003 Jul 1;31(13):3812-4.

SIFT: Predicting amino acid changes that affect protein function.

Ng PC, Henikoff S.

Nat Methods. 2010 Apr;7(4):248-9.

A method and server for predicting damaging missense mutations.

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR.





# Bioinformatics analysis of mutation is indirect

- Consider ways that a single amino acid substitution can impact protein function
  - Protein aggregates and does not fold
  - Protein is destabilized and unfolds partially
  - Binding interfaces are disrupted
  - Active sites are disrupted
  - PTM sites are disrupted



 Infer these events using data mining and/or simplifying proxies



#### http://www.mquter.qut.edu.au/bio/bio2rdf\_default.aspx

| Mutation     | Evolutionarily conserved | Charge Change | Binding Site |  |  |
|--------------|--------------------------|---------------|--------------|--|--|
| TP53 S362A   | Yes                      | 0             | Yes          |  |  |
| PIK3CA P539R | Yes                      | 1             | No           |  |  |
| PIK3CA E545K | No                       | 2             | No           |  |  |

## Training / validation set

- An empirical approach to assess if a feature is relevant
  - Collect examples from two classes



## Training / validation set

- An empirical approach to assess if a feature is relevant
  - Collect examples from two classes
  - –Compute feature for all examples



Binding site

## Training / validation set

- An empirical approach to assess if a feature is relevant
  - -Collect examples from two classes
  - –Compute feature for all examples
  - Compute association between feature and class membership

Disease causing mutations



Benign mutations





|   | Yes | No |
|---|-----|----|
| + | 3   | 1  |
|   | 0   | 4  |

## Supervised machine learning



**Training Set** 



http://euvolution.com/futurist-transhuman-news-blog/

## Does it work?

 Features capture the relevant differences between the classes

 Training set is representative of the actual population Cancer Res. 2009 Aug 15;69(16):6660-7. Epub 2009 Aug 4.

Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations.

Carter H, Chen S, Isik L, Tyekucheva S, Velculescu VE, Kinzler KW, Vogelstein B, Karchin R.



## **CHASM Training Set**





3300 missense mutations (75) genes







# Synthetic passenger missense mutations

 Generate using mutation rates by di-nucleotide context for a particular tumor type

8 contexts: C\*pG,CpG\*,TpC\*,G\*pA, A,C,T,G

|   | C in CpG | G in CpG | C in TpC | G in GpA | A    | C    | G    | T    |
|---|----------|----------|----------|----------|------|------|------|------|
| A | 0.05     | 0.97     | 0.31     | 0.44     | 0.00 | 0.29 | 0.50 | 0.39 |
| C | 0.00     | 0.02     | 0.00     | 0.22     | 0.13 | 0.00 | 0.13 | 0.39 |
| G | 0.02     | 0.00     | 0.21     | 0.00     | 0.62 | 0.20 | 0.00 | 0.22 |
| Т | 0.93     | 0.01     | 0.48     | 0.33     | 0.25 | 0.51 | 0.37 | 0.00 |

Glioblastoma multiforme (GBM)



## CHASM P-value

 $P(S \le s | \text{Null hypothesis is true})$ 

- Null hypothesis: mutation is a passenger
- Empirical null: scores of mutations that have (almost) no possibility of being drivers



CHASM scores

### PTM enzyme

**SNP** density

**DNA** binding



Ortholog compatible amino acid

Exon conservation

Superfamily conservation





### CHASM and false negatives

#### Training set drivers







## Prioritization of driver mutations in pancreatic cancer using cancer-specific high-throughput annotation of somatic mutations (CHASM).

Carter H, Samayoa J, Hruban RH, Karchin R.



| Hugo   | Transcript  | Mut   | Zygosity | CHASM score | p-value | q-value<= | In training set? |
|--------|-------------|-------|----------|-------------|---------|-----------|------------------|
| TP53   | CCDS11118.1 | Y234C | Homo     | 0.034       | 0.0004  | 0.05      | Yes              |
| CDKN2A | CCDS6510.1  | H98P  | Homo     | 0.052       | 0.0004  | 0.05      | Position Only    |
| TP53   | CCDS11118.1 | 1255N | Homo     | 0.062       | 0.0004  | 0.05      | Yes              |
| TP53   | CCDS11118.1 | S241F | Homo     | 0.066       | 0.0004  | 0.05      | Yes              |
| CDKN2A | CCDS6510.1  | L63V  | Het      | 0.068       | 0.0004  | 0.05      | Yes              |
| TP53   | CCDS11118.1 | L257P | Homo     | 0.072       | 0.0004  | 0.05      | No               |
| TP53   | CCDS11118.1 | C275Y | Homo     | 0.078       | 0.0004  | 0.05      | Yes              |
| TP53   | CCDS11118.1 | G266V | Homo     | 0.078       | 0.0004  | 0.05      | Yes              |
| TP53   | CCDS11118.1 | R248W | Homo     | 0.134       | 0.0004  | 0.05      | Yes              |
| NEK8   | NP_835464   | A197P | Het      | 0.144       | 0.0004  | 0.05      |                  |
| PIK3CG | CCDS5739.1  | R839C | Homo     | 0.166       | 0.0008  | 0.05      |                  |
| TP53   | CCDS11118.1 | H179R | Homo     | 0.180       | 0.0013  | 0.05      | Yes              |
| SMAD4  | CCDS11950.1 | C363R | Homo     | 0.184       | 0.0013  | 0.10      | Position Only    |
| TP53   | CCDS11118.1 | R282W | Homo     | 0.198       | 0.0013  | 0.10      | Yes              |
| KRAS   | CCDS8702.1  | G12D  | Het      | 0.202       | 0.0013  | 0.10      | Yes              |

### PIK3CG



#### Driver mutations: A roadmap for getting close and personal in pancreatic cancer.

Korc M.



©2010 Lanues bioscience.

Potential to cross-talk with Kras-driven pathways?

## PIK3CG may be a tumor suppressor in pancreatic cancer



Lanues blostlence.



Acknowledgments



Hannah Carter





Dr. Sining Chen



**Dewey Kim** 



Dr. Svitlana Tyekucheva



**Andy Wong** 



**Mark Diekhans** 



Dr. Kideok Jin



Dr. Saraswati Sukumar



NIH R21 CA135866 NSF DBI 0845275 Susan G. Komen KG080137 DoD NDSEG graduate fellowship 32 CFR 168a