Introduction	Multiple testing	Confidence intervals	Clinical trials	Discussion

Three-sided Hypothesis Testing Simultaneous Testing of Superiority, Equivalence and Inferiority

Jelle Goeman Aldo Solari Theo Stijnen

Medical Statistics & Bioinformatics Leiden University Medical Center

Ribno, 2010-09-21

Three-sided Hypothesis Testing

Introduction	Multiple testing	Confidence intervals	Clinical trials	Discussion

Multiple testing in one-parameter models

Jelle Goeman Aldo Solari Theo Stijnen

Medical Statistics & Bioinformatics Leiden University Medical Center

Ribno, 2010-09-21

LU MC

Multiple testing in one-parameter models

Jelle Goeman, Aldo Solari, Theo Stijnen

∃ >

Introduction	Multiple testing	Confidence intervals	Clinical trials	Discussion
0000	00000000000000	000000	0000000	000

Outline

1 Introduction

2 Multiple testing

- Closed testing
- The partitioning principle
- Three-sided testing
- **3** Confidence intervals
- 4 Clinical trials
 - The ban on one-sided testing
 - Applications

Introduction	Multiple testing	Confidence intervals	Clinical trials	Discussion
0000	0000000000000	000000	0000000	000

Outline

1 Introduction

2 Multiple testing

- Closed testing
- The partitioning principle
- Three-sided testing
- **3** Confidence intervals

Clinical trials

- The ban on one-sided testing
- Applications

5 Discussion

Jelle Goeman, Aldo Solari, Theo Stijnen

A simple testing problem?

Null hypothesis

 $H_0: \mu = 0$

Alternative hypothesis

 $H_A: \mu \neq 0$ (two-sided)

A simple testing problem?

Null hypothesis

 $H_0: \mu = 0$

Alternative hypothesis

 $H_A: \mu \neq 0$ (two-sided)

The test result

p-value $< \alpha$ Estimate: $\hat{\mu} > 0$

A simple testing problem?

Null hypothesis

 $H_0: \mu = 0$

Alternative hypothesis

 $H_A: \mu \neq 0$ (two-sided)

The test result

p-value $< \alpha$ Estimate: $\hat{\mu} > 0$

Our conclusion?

- We conclude $\mu \neq 0$?
- We conclude $\mu > 0$?

- 4 回 2 - 4 □ 2 - 4 □

L U

э

Classical point of view

Classical Neyman-Pearson theory

- We should conclude: Reject $H_0: \mu = 0$
- Concluding $\mu > 0$ is post hoc \rightarrow may inflate error level?

Discussion

Classical point of view

Classical Neyman-Pearson theory

- We should conclude: Reject H_0 : $\mu = 0$
- Concluding $\mu > 0$ is post hoc \rightarrow may inflate error level?

Directional error

Correct rejection of H_0 but false inference of the sign of the parameter

Also known as

Type III errors (Kaiser 1967)

・回 と く ヨ と く ヨ と

Introduction	Multiple testing	Confidence intervals	Clinical trials	Discussion

This talk

Conclusion (well-known)

Without inflating error levels we may reject both $\mu=0$ and $\mu<0$

Introduction	Multiple testing	Confidence intervals	Clinical trials	Discussion
0000				

This talk

Conclusion (well-known)

Without inflating error levels we may reject both $\mu=0$ and $\mu<0$

But additionally

Without inflating error levels We may sometimes reject $\mu < 0$ if we fail to reject $H_0: \mu = 0$

Introduction	Multiple testing	Confidence intervals	Clinical trials	Discussion
0000				

This talk

Conclusion (well-known)

Without inflating error levels we may reject both $\mu=0$ and $\mu<0$

But additionally

Without inflating error levels We may sometimes reject $\mu < 0$ if we fail to reject $H_0: \mu = 0$

How?

By making use of the latest developments in multiple testing

∃ >

A multiple testing perspective

Multiple inferences

We want to reject not only $\mu=$ 0, but also $\mu>$ 0 or $\mu<$ 0

Type I error

Committed in case of any false inference among all inferences made

Probability of a type I error

Familywise error rate

Introduction	Multiple testing	Confidence intervals	Clinical trials	Discussion
0000	00000000000000	000000	0000000	000

Outline

Introduction

2 Multiple testing

- Closed testing
- The partitioning principle
- Three-sided testing

3 Confidence intervals

4 Clinical trials

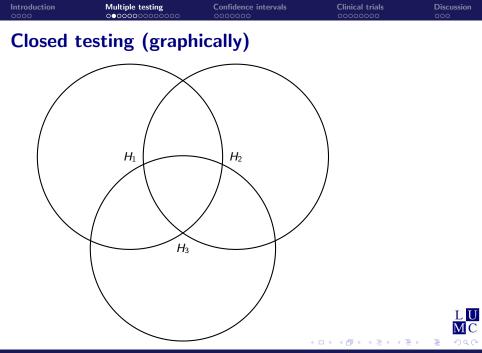
- The ban on one-sided testing
- Applications

5 Discussion

Closed testing (Marcus, Peritz, Gabriel, 1976)

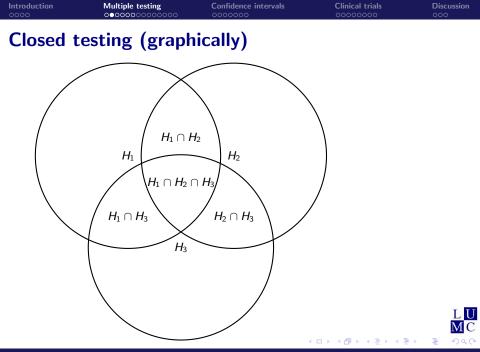
Closure

- Create all intersection hypotheses of original hypotheses
- Example: H_1 , H_2 , $H_3 \rightarrow H_1$, H_2 , H_3 , $H_1 \cap H_2$, $H_1 \cap H_3$, $H_2 \cap H_3$, $H_1 \cap H_2 \cap H_3$
- Test all hypotheses at level α


Reject hypothesis *H* if

All intersection hypotheses $\subseteq H$ are rejected

Control


Strong control of FWER at level α

伺下 イヨト イヨト

Multiple testing in one-parameter models

Jelle Goeman, Aldo Solari, Theo Stijnen

Multiple testing in one-parameter models

Jelle Goeman, Aldo Solari, Theo Stijnen

Introduction	Multiple testing	Confidence intervals	Clinical trials	Discussion
0000	000000000000000000000000000000000000000	000000	0000000	000

Directional errors via closed testing

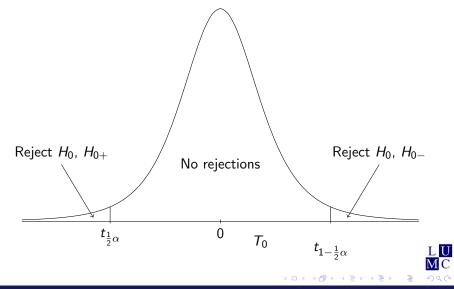
Two hypotheses

$$egin{array}{rcl} {\cal H}_{0+} & : & \mu \geq 0 \ {\cal H}_{0-} & : & \mu \leq 0. \end{array}$$

Intersection hypotheses

 $H_0: \mu = 0$ is $H_{0+} \cap H_{0-}$

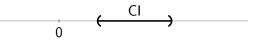
Closed testing


- Test H_0 with a two-sided test
- Test H_{0+} with a one-sided test (left)
- Test H_{0-} with a one-sided test (right)

By closed testing

Start testing H_0 . If significant, go on with H_{0+} and H_{0-}

Multiple testing in one-parameter models


Jelle Goeman, Aldo Solari, Theo Stijnen

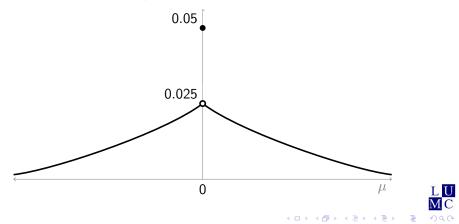
Discussion

Equivalent: Confidence interval based approach

CI based approach

- Make a two-sided confidence interval (I_{μ}, u_{μ}) for μ
- If $I_{\mu} \geq 0$: reject H_0 and H_{0-}
- If $u_{\mu} \leq 0$: reject H_0 and H_{0+}

Equivalent


To the results of a closed testing approach

T TT

Room for improvement

Probability of a directional error

As a function of true μ

Bonferroni and Shaffer

Set-up

p-values p_1, \ldots, p_m for hypotheses H_1, \ldots, H_m

Bonferroni

Reject all H_i for which $p_i \leq \alpha/m$

Bonferroni and Shaffer

Set-up

p-values p_1, \ldots, p_m for hypotheses H_1, \ldots, H_m

Bonferroni

Reject all H_i for which $p_i \leq \alpha/m$

Restricted combinations

If no more than k < m hypotheses can be simultaneously true

▲□ ▶ ▲ □ ▶ ▲ □ ▶

T TT

Bonferroni and Shaffer

Set-up

p-values p_1, \ldots, p_m for hypotheses H_1, \ldots, H_m

Bonferroni

Reject all H_i for which $p_i \leq \alpha/m$

Restricted combinations

If no more than k < m hypotheses can be simultaneously true

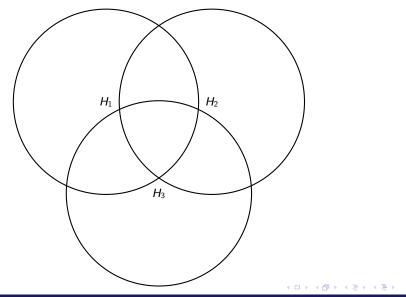
Shaffer

Reject all H_i for which $p_i \leq \alpha/k$

・回 と く ヨ と く ヨ と

The partitioning principle

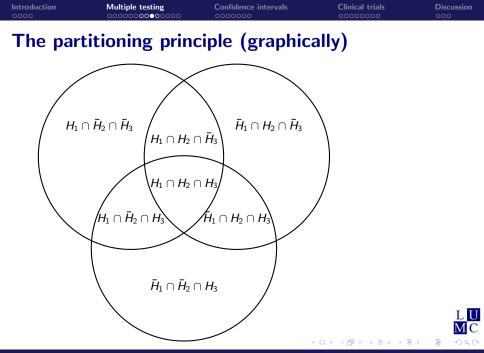
Partitioning principle (Finner and Strassburger, 2002)


- Disjoint hypotheses: no multiple testing correction needed
- $\bullet\,$ Do all tests at level α and still control FWER
- Reason (Shaffer): at most one hypothesis can be true

Partitioning: recipe

- Partition parameter space into disjoint subhypotheses
- $\bullet\,$ Test disjoint hypotheses at level α
- Reject original hypotheses if all component parts are rejected

The partitioning principle (graphically)



Jelle Goeman, Aldo Solari, Theo Stijnen

L<mark>U</mark> MC

Э

Multiple testing in one-parameter models

Jelle Goeman, Aldo Solari, Theo Stijnen

Partitioning as a principle

Fundamental

Every known FWER control procedure is a special case of partitioning

Closed testing

Partitioning uniformly improves on closed testing

- 17 ▶

Disjoint hypotheses

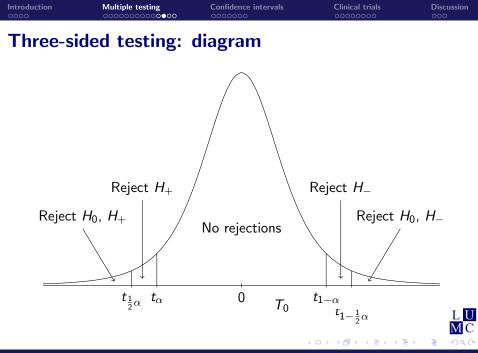
Define three hypotheses

Multiple testing in one-parameter models

Disjoint hypotheses

Define three hypotheses

 $\begin{array}{lll} H_0 & : & \mu = 0 & (\text{equivalence}) \\ H_+ & : & \mu > 0 & (\text{superiority}) \\ H_- & : & \mu < 0 & (\text{inferiority}). \end{array}$


Three-sided testing

- Test H_0 with a two-sided test
- Test H_+ with a one-sided test (left)
- Test H₋ with a one-sided test (right)

・回 と く ヨ と く ヨ と

L U

3

Multiple testing in one-parameter models

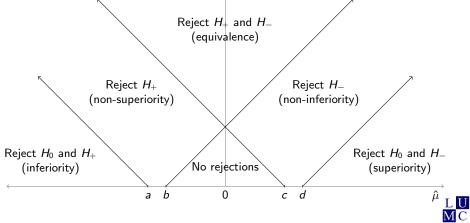
Jelle Goeman, Aldo Solari, Theo Stijnen

Three-sided testing

Equivalence margin

 $\Delta > 0$

The three hypotheses


$$\begin{array}{ll} H_0 & : & -\Delta \leq \mu \leq \Delta & (\text{equivalence}) \\ H_+ & : & \mu > \Delta & (\text{superiority}) \\ H_- & : & \mu < -\Delta & (\text{inferiority}). \end{array}$$

Multiple testing in one-parameter models

・日・ ・ヨ・ ・ヨ・

Introduction	Multiple testing	Confidence intervals	Clinical trials	Discussion
0000	00000000000000	000000	0000000	000

Outline

Introduction

2 Multiple testing

- Closed testing
- The partitioning principle
- Three-sided testing

3 Confidence intervals

Clinical trials

- The ban on one-sided testing
- Applications

5 Discussion

-

Free additional inference?

Additional inference

Sometimes H_+ or H_- rejected even if H_0 not rejected

Question

Does the additional inference come at a price?

Free additional inference?

Additional inference

Sometimes H_+ or H_- rejected even if H_0 not rejected

Question

Does the additional inference come at a price?

Answer

Yes: forget about the classical confidence intervals

Multiple testing in one-parameter models

Reminder: CI as inverted test

What is a confidence interval

- Test $H_x: \mu = x$ for every x
- Record which H_x get rejected
- Confidence interval: $\{x : H_x \text{ not rejected}\}$

Reminder: CI as inverted test

What is a confidence interval

- Test $H_x: \mu = x$ for every x
- Record which H_x get rejected
- Confidence interval: $\{x : H_x \text{ not rejected}\}$

Doing infinitely many tests

Multiple testing correction needed?

Reminder: CI as inverted test

What is a confidence interval

- Test $H_x: \mu = x$ for every x
- Record which H_x get rejected
- Confidence interval: $\{x : H_x \text{ not rejected}\}$

Doing infinitely many tests

Multiple testing correction needed?

Not necessary by the partitioning principle Because all hypotheses H_x are disjoint

Tests to use for confidence intervals

What test to use

Confidence interval theory does not prescribe a test to use

Multiple testing in one-parameter models

Tests to use for confidence intervals

What test to use

Confidence interval theory does not prescribe a test to use

Standard confidence interval

- Uses a two-sided test for every $H_x: \mu = x$
- Not consistent with three-sided inference

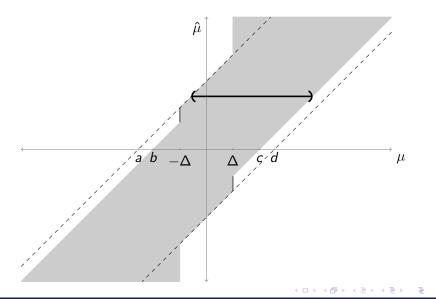
Multiple testing in one-parameter models

A ■

Confidence intervals for three-sided testing

Question

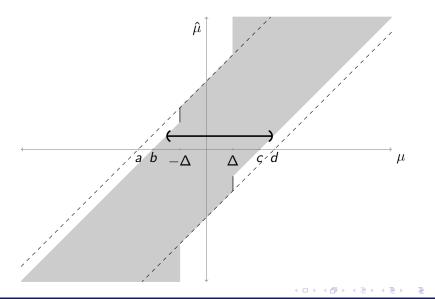
What confidence interval is consistent with three-sided testing?


Inverted test

Test H_x : $\mu = x$ for every x

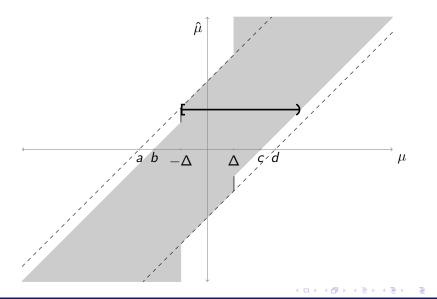
Use

- Two-sided tests for $-\Delta \leq x \leq \Delta$
- One-sided test (left) for $x < -\Delta$
- One-sided test (right) for $x > \Delta$



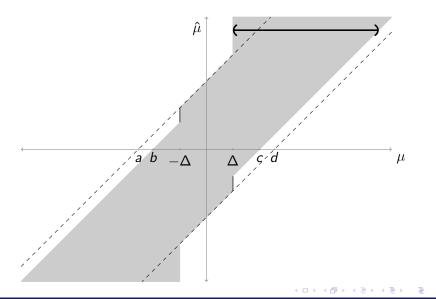
Multiple testing in one-parameter models

Jelle Goeman, Aldo Solari, Theo Stijnen



Multiple testing in one-parameter models

Jelle Goeman, Aldo Solari, Theo Stijnen



Multiple testing in one-parameter models

Jelle Goeman, Aldo Solari, Theo Stijnen

Introduction	Multiple testing	Confidence intervals	Clinical trials	Discussion
		0000000		

Multiple testing in one-parameter models

Jelle Goeman, Aldo Solari, Theo Stijnen

Confidence intervals: gain and loss

Comparison with the usual confidence interval

- Narrower if $-\Delta$ or Δ in classical CI
- Typically broader otherwise

Open and closed

CI sometimes is a half-closed interval [a, b]

Lower and upper bound

- Lower bound never above Δ
- Upper bound never below $-\Delta$

A ₽

Three-sided inference based on regular CI

Consistent with classical CI

- Reject H_0 if $CI \cap H_0 = \emptyset$
- Reject H_+ if $CI \cap H_+ = \emptyset$
- Reject H_{-} if $CI \cap H_{-} = \emptyset$

Relative to 3-sided testing

Less powerful to reject H_+ , H_-

 \rightarrow less powerful to infer non-inferiority, non-superiority

Introduction	Multiple testing	Confidence intervals	Clinical trials	Discussion
0000	0000000000000	0000000	0000000	000

Outline

Introduction

2 Multiple testing

- Closed testing
- The partitioning principle
- Three-sided testing
- **3** Confidence intervals
- 4 Clinical trials
 - The ban on one-sided testing
 - Applications

5 Discussion

Non-inferiority and superiority testing

Clinical trials often asymmetric

- Drug versus placebo
- New versus established treatment.
- Drug without side effects versus drug with

Non-inferiority trials

New drug is not worse than established drug

Non-inferiority margin

New drug may be at most Δ worse than established drug

One-sided testing in clinical trials

Asymmetric set-up

- "Placebo outperforms drug" not interesting
- Consequence: one-sided test?
- One-sided testing not allowed by regulatory agencies

Regulatory guidelines

- \bullet One-sided tests should be performed at level $\alpha/2$
- Effectively: ban on one-sided tests

What's wrong with the one-sided test?

Post hoc abuse

Following up on a significant result in opposite direction

Suggestive prejudice

One-sided test does not treat placebo and treatment equally

Multiple testing in one-parameter models

A ■

What's wrong with the one-sided test?

Post hoc abuse

Following up on a significant result in opposite direction

Suggestive prejudice

One-sided test does not treat placebo and treatment equally

Symmetry

Interpretation of guidelines: prescribes symmetric procedures

Three-sided testing

Symmetric

- Not biased towards positive or negative
- Still: allows one-sided tests

Flexible

Type of trial (superiority, non-inferiority, equivalence) does not have to be declared beforehand

Choosing Δ

Non-inferiority margin must be declared beforehand

< ∃ >

TT

The TORCH trial

Trial outline

- COPD patients
- Salmeterol and Fluticasone combination versus placebo
- Outcome: hazard ratio (death)

Confidence interval

- Traditional: (0.681,1.002)
- Three-sided testing ($\Delta = 0$): (0.702,1]

Conclusion

New CI rules out harmful effect

・回 と く ヨ と く ヨ と

The COLOR trial

Trial outline

- Colon cancer patients
- Laparoscopic colectomy versus open surgery
- Outcome: 3-year disease-free survival
- Non-inferiority trial $\Delta = 7\%$

Confidence interval

- Traditional: (-7.2%,3.2%)
- Three-sided testing: [-7%,3.2%)

Conclusion

New CI rules out Δ -inferiority of new treatment

The EVA-S3 trial

Trial outline

- Patients with symptomatic carotid stenosis
- Stenting versus Endarterectomy
- Outcome: stroke or death 30 days after treatment
- Non-inferiority trial $\Delta = 2\%$

Confidence interval

- Traditional: (-10.0%,-1.4%)
- Three-sided testing: (-9.3%,-1.4%)

Conclusion

Qualitatively similar conclusion, but narrower CI

The APOLLO trial

Trial outline

- Patients with type II diabetis
- Insulin Glargine versus Prandial Insulin Lispro
- Outcome: haemoglobin decrease
- Non-inferiority trial $\Delta = 0.4$

Confidence interval

- Traditional: (-0.322,0.008)
- Three-sided testing: (-0.322,0.008)

Conclusion

No change

・回 と く ヨ と く ヨ と

I II

Introduction	Multiple testing	Confidence intervals	Clinical trials	Discussion
0000	00000000000000000	000000	0000000	000

Outline

Introduction

2 Multiple testing

- Closed testing
- The partitioning principle
- Three-sided testing
- **3** Confidence intervals

4 Clinical trials

- The ban on one-sided testing
- Applications

5 Discussion

TT

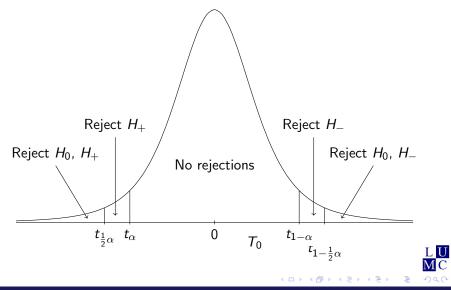
Discussion

Three-sided testing

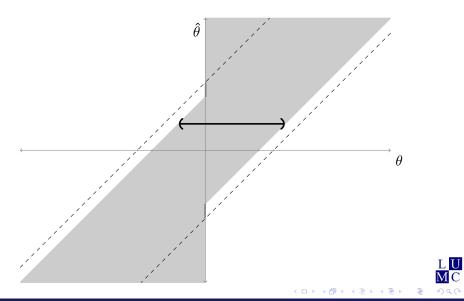
- Increased power of one-sided testing
- Symmetry of two-sided testing

Confidence intervals

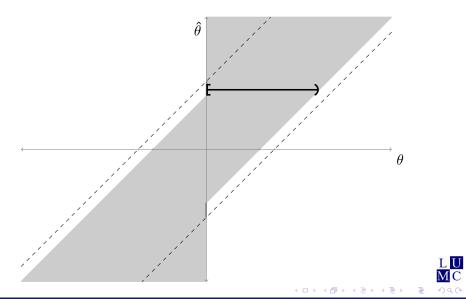
- Approach not reconcilable with classical CI
- Alternative CI available (often narrower)


Focussed testing

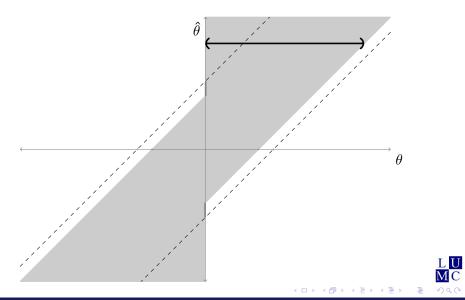
Uniformly more power than non-focussed procedure


< ∃ >

Surprising free inference



Confidence intervals


Multiple testing in one-parameter models

Confidence intervals

Multiple testing in one-parameter models

Confidence intervals

Multiple testing in one-parameter models