

Enhancing Graph Database Indexing By Suffix Tree Structure

V. Bonnici, A. Ferro, R. Giugno, A. Pulvirenti Dipartimento di Matematica e Informatica Università di Catania

D. Shasha Courant Institute of Mathematical Science, New York University

Outline

- Biological Motivations
- GraphGrep
- GraphGrepSX
- Experimental results (GIndex, Gcoding, GraphGrep, Ctree, SING)

Motivations

- Many applications in industry, science, and engineering share the same problem: given a subgraph, find its occurrences in a database of graphs.
 - Prediction of the functionality of new natural or synthesized compounds
 - Make a compound Q more active
 - Find fragment with the same function among different species
 - Predict protein function, Predict protein interaction

Biological Networks

Gene Ontologies

Graph indexing system

- Graph-to-graph matching algorithms can be used, efficiency considerations suggest the use of specific techniques to reduce the search space and the time complexity.
- In a preprocessing phase, each graph of the database is analyzed in order to extract and store its discriminatory properties, features.
- In the filtering phase, the graph database index is compared with the query index in order to discard graphs of the database not containing some features present in the query graph.

GraphGrep

Graphs searching is an NP-problem

Shasha D, Wang JL, Giugno R: Algorithmics and Applications of Tree and Graph Searching. Proceeding of the ACM Symposium on Principles of Database Systems (PODS) 2002, :39{52.

A. Ferro, R. Giugno, M. Mongiovì, A. Pulvirenti, D. Skripin, D. Shasha D. GraphFind: Enhancing Graph Searching by Low Support Data Mining Techniques. BMC Bioinformatics 2008, Vol. 9 (Suppl 4) :S10 doi:10.1186/1471-2105-9-S4-S10

GraphGrep: Index building

For each graph in DB:

- Find all paths of length from 1 to L (4,10)
- Save the paths in a Berkeley DB
- Count how many occurrences of each path in each graph
- Save the occurrences in an hash table indexed by the strings of the paths

GraphGrep: Index building

(b) Fingerprint Berkeley DB HashTable

GraphGrep: Filtering and Matching

GraphGrep: Matching VF_lib

(Cordella et al. IEEE PAMI 2004, http://amalfi.dis.unina.it/graph/db/vflib-2.0/doc/vflib.html)

- Extension of Ullmann matching algorithm (Journal of the ACM, 1976)
- The process of finding the mapping function can be suitably described by means of a TREE called State Space Representation (SSR)
- Each node is a state s of the partial matching process
- Transition from a generic state s to a successor s' represents the addition of a pair matched nodes.
- k-look-ahead rules for checking in advance if a consistent state s has no consistent successors after k steps + Semantic rules

Realize a compact representation of the index by making use of Suffix trees

"Algorithms on Strings, Trees, and Sequences" by Dan Gusfield

GraphGrepSX

- Preprocessing phase
 - replaces the hash table index by a suffix tree index
- Filtering phase
 - Build a query index tree
 - The candidate set is constructed by matching the query index tree and the database index
- This results in a more flexible graph indexing system
 - different ways to build the query index
 - an efficient technique to reduce redundant checks

GraphGrepSX builds the tree index as follows:

Computed by DFS visit, the backtracking allows to find paths with the same suffix

GraphGrepSX builds the tree index as follows:

Computed by DFS visit, the backtracking allows to find paths with the same suffix

GraphGrepSX builds the tree index as follows:

Computed by DFS visit, the backtracking allows to find paths with the same suffix

Experimental analysis on molecular dataset

AIDS antiviral screening database

http://dtp.nci.nih.gov/docs/aids/

Experimental analysis on molecular dataset

Total index size label-paths table + hashtable

Index fingerprint size hashtable only

A path in the index structure is defined as maximal path if:

A path in the index structure is defined as maximal path if: •its length is L

A path in the index structure is defined as maximal path if: •its length is L

A path in the index structure is defined as maximal path if:

•its length is L

•the path has length < L but it cannot be extended

A path in the index structure is defined as maximal path if:

•its length is L

•the path has length < L but it cannot be extended

A path in the index structure is defined as maximal path if:

•its length is L

•the path has length < L but it cannot be extended

GraphGrepSX: Filtering phase-Query tree index structure construction

- Discard graphs from the database which do not match the query by analyzing only the maximal paths
- the query tree nodes representing these maximal paths are marked

Red nodes represent End-points of Maximal Paths

Experimental analysis

Molecular dataset of 42000 graphs

Experimental analysis

Molecular dataset of 42000 graphs

Candidates

Experimental analysis: CTree, GCoding, GraphGrep, GraphGrepSX

Molecular dataset of 42000 graphs

Experimental analysis: CTree, GCoding, GraphGrep, GraphGrepSX

Molecular dataset of 42000 graphs

Query time

Huahai He Ambuj K. Singh, Closure-Tree: An Index Structure for Graph Queries, ICDE '06

Lei Zou, Lei Chen, Jeffrey Xu Yu, Yansheng Lu, A novel spectral coding in a large graph database, Proceedings of the 11th international conference on Extending database technology, 2008

Experimental analysis: CTree, GCoding, GraphGrep, GraphGrepSX

Molecular dataset of 42000 graphs

Filtering time

Matching time

