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Can a Biologist Fix a Radio? Lazebnik (2002)

The Case for Systems Biology

“It is difficult to find a black cat in a dark room,
especially if there is no cat.”

» Biological systems are immensely complicated.
» Lazebnik argues the need for models that are quantitative.
» Such models should be predictive of biological behaviour.
» Such models need to be combined with biological data.
» Systems biology:
» Build mechanistic models (based on biochemical knowledge) of
the system.
» Identify modules, submodules, and parameterize the models.



Coregulation of Gene Expression

The Case for Computational Biology

» Gene Expression to Transcriptional Regulation.
» A “data exploration” problem (computational
biology /bioinformatics):

» Use gene expression data to speculate on coregulated genes.

» Traditionally use clustering of gene expression profiles.
» Contrast with (computational) systems biology approach:

» Detailed mechanistic model of the system is created.

Fit parameters of the model to data.

>
» Problematic for large data (genome wide).
> Need to deal with unobserved biochemical species (TFs).
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General Approach

Broadly Speaking: Two approaches to modeling

data modeling

let the data “speak”
computational models
adaptive models
PCA, clustering

mechanistic modeling

impose physical laws
systems models
differential equations
SDE, ODE models




A Hybrid Approach

Introduce aspects of systems biology to computational models

» We advocate an approach between systems and
computational biology.

» Introduce aspects of systems biology to the computational
approach.
» There is a computational penalty, but it may be worth paying.
> ldeally there should be a smooth transition from pure
computational (PCA, clustering, SVM classification) to
systems (non-linear (stochastic) differential equations).
» This work is one part of that transition.



Radiation Damage in the Cell

» Radiation can damages molecules including DNA.

» Most DNA damage is quickly repaired—single strand breaks,
backbone break.

» Double strand breaks are more serious—a complete disconnect
along the chromosome.

> Cell cycle stages:

» Gy: Cell is not dividing.
» Gy: Cell is preparing for meitosis, chromosomes have divided.
» S: Cell is undergoing meitosis (DNA synthesis).

» Main problem is in G1. In Gy there are two copies of the
chromosome. In G; only one copy.



p53 “Guardian of the Cell”

v

Responsible for Repairing DNA damage

v

Activates DNA Repair proteins

v

Pauses the Cell Cycle (prevents replication of damage DNA)

v

Initiates apoptosis (cell death) in the case where damage can't
be repaired.

v

Large scale feeback loop with NF-xB.



p53 DNA Damage Repair

Figure: p53. Left unbound, Right bound to DNA. Images by David S.
Goodsell from http://www.rcsb.org/ (see the'Molecule of the Month”
feature).


http://www.rcsb.org/

Figure: Repair of DNA damage by p53. Image from Goodsell (1999).



Some p53 Targets

DDB2 DNA Damage Specific DNA Binding Protein 2. (also
governed by C/ EBP-beta, E2F1, E2F3,...).

p21 Cycline-dependent kinase inhibitor 1A (CDKN1A). A
regulator of cell cycle progression. (also goverened by
SREBP-1a, Spl, Sp3,... ).
hPA26/SESNI sestrin 1 Cell Cycle arrest.
BIK BCL2-interacting killer. Induces cell death
(apoptosis)
TNFRSF10b tumor necrosis factor receptor superfamily, member
10b. A transducer of apoptosis signals.



Modelling Assumption

> Assume pb3 affects targets as a single input module network
motif (SIM).

Figure: p53 SIM network motif as modelled by Barenco et al. 2006.



Standard Approach

Clustering of Gene Expression Profiles

> Assume that coregulated genes will cluster in the same groups.

> Perform clustering, and look for clusters containing target
genes.

» These are candidates, look for confirmation in the literature
etc.
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Mathematical Model

» Differential equation model of system.

dx; (t
%=bj+5ﬁ(f)—djxj(t)
dx; (t

g (6 + 2D — s ()

rate of mRNA transcription, baseline transcription rate,
transcription factor activity, mRNA decay

» We have observations of x; (t) from gene expression. .

» Reorder differential equation.

> An estimate of dﬁ;ﬁ—t) is obtained through fitting polynomials.

» Jointly estimate 7 (1) at observations of time points along
with {bj’ dj? sj}ngl'
» Fit parameters by maximum likelihood or MCMC sampling.
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Mathematical Model

» Clustering model is equivalent to assuming d;, b;, and s; are
v. large.

dx; (t)

Sq = bl (0 —d(0)

djx; (t) = bj + s;f (t)

rate of mRNA transcription, baseline transcription rate,
transcription factor activity, mRNA decay

» We have observations of x; (t) from gene expression.
» Reorder differential equation and ignore gradient term.
» This suggests genes are scaled and offset versions of the TF.

» By normalizing data and clustering we hope to find those TFs.



Mathematical Model

Method

Ranked prediction of p53 targets using hidden variable dynamic
modeling
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Response of p53
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Figure: Results from Barenco et al. (2006). Top is parameter estimates.
Bottom is inferred profile.



Respose to p53 ...
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Figure: Results from Barenco et al. (2006). Activity profile of p53 was
measured by Western blot to determine the levels of ser-15
phosphorylated p53 (serl5P-p53).



Probabilistic Model for f(t)



Gaussian Distribution

Zero mean Gaussian distribution
» A multi-variate Gaussian distribution is defined by a mean and

a covariance matrix.

T exp

N (flp, K) = T
K]|2

(2m

1
3 2

<_(f—u)TK‘1(f—u)>_

» We will consider the special case where the mean is zero,

1 exp (_ fTK_1f>
(2m)% |K|? 2 )

N (£]0,K) =



Sampling a Function

Multi-variate Gaussians

» We will consider a Gaussian with a particular structure of
covariance matrix.

» Generate a single sample from this 25 dimensional Gaussian
distribution, f = [f1, f> ... f5].

> We will plot these points against their index.



Gaussian Distribution Sample
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(a) A 25 dimensional correlated ran- (b) colormap showing correlations
dom variable (values ploted against between dimensions
index)

Figure: A sample from a 25 dimensional Gaussian distribution.
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Covariance Function

The covariance matrix

>

Covariance matrix shows correlation between points f; and f; if
i is near to j.
Less correlation if / is distant from j.

Our ordering of points means that the function appears
smooth.

Let's focus on the joint distribution of two points from the 25.
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Prediction of f5 from f;

demGpCov2D([1 5])
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Figure: Covariance for [ ;1 ] is Kis = [
5



Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

2
N =
k(t,t)-aexp( Tz

» Covariance matrix is built
using the inputs to the
function t.

» For the example above it
was based on Euclidean
distance.

» The covariance function is
also know as a kernel.




Covariance Samples

demCovFuncSample

Figure: Exponentiated quadratic kernel with / = 0.3, « =1
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Figure: Exponentiated quadratic kernel with / =1, a =1



Covariance Samples
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Figure:  Exponentiated quadratic kernel with ¢ =0.3, a = 4
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Figure: Linear covariance function, o = 16.



Covariance Samples
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Figure: MLP covariance function, o2 = 100, 02 = 100, « = 8.
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Figure: MLP covariance function, o2 = 100, 02 =0, a = 8.
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demCovFuncSample

-1 -0.5 0 0.5 1

Figure: Bias term, o = 4



Covariance Samples

demCovFuncSample

Figure: Exponentiated quadratic £ = 0.3, a = 1 plus bias term
with « = 1 plus white noise with o = 0.01.



Covariance Samples

demCovFuncSample

Figure: Ornstein-Uhlenbeck (stationary Gauss-Markov)
covariance function ¢ =1, oo = 4.



Gaussian Process Interpolation

demInterpolation
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Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).
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Noise Models

Graph of a GP

» Relates input variables, t, 1

to vector, x, through f e /.

given kernel parameters 6.

» Plate notation indicates
independence of x;|f;.

> Noise model, p (x;|f;) can i—1. ..n
take several forms. N 4

» Simplest is Gaussian

noise. Figure: The Gaussian process
depicted graphically.



Gaussian Noise

» Gaussian noise model,
p(alf) = N (xilf, o)

where o2 is the variance of the noise.

» Equivalent to a covariance function of the form
2
k(t,', tJ) = 5,‘JO‘

where §; ; is the Kronecker delta function.

» Additive nature of Gaussians means we can simply add this
term to existing covariance matrices.



Gaussian Process Regression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Figure: Examples include WiFi localization, C14 callibration curve.
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Learning Kernel Parameters
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Example: Transcriptional Regulation

First Order Differential Equation

v

—dxéit) = bj + 5f (1) — djx; (¢)

» It turns out that our Gaussian process assumption for f(t),
implies x(t) is also a Gaussian process.

» The new Gaussian process is over f(t) and all its targets:
x1(t), x2(t), ... etc.

» Qur new covariance matrix gives correlations between all these
functions.

» This gives us a probabilistic model for transcriptional
regulation.



Covariance for Transcription Model

RBF covariance function for f (t)
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Covariance for Transcription Model

RBF covariance function for f (t)
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Joint Sampling of f (t) and x (t)

> simSample
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Figure: Joint samples from the ODE covariance, black: f (t), red:
x1 (t) (high decay/sensitivity), green: x; (t) (medium
decay/sensitivity) and blue: x3 (t) (low decay/sensitivity).
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p53 Results with GP
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Gaussian process modelling of latent chemical species:
applications to inferring transcription factor activities
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p53 Results with GP

(Gao et al., 2008)

Inferred p53 protein gene TNFRSF20b mRNA gene DDB2 mMRNA
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Ranking with ERK Signalling

v

Target Ranking for Elk-1.

Elk-1 is phosphorylated by ERK from the EGF signalling
pathway.

v

v

Predict concentration of Elk-1 from known targets.
Rank other targets of Elk-1.

v
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Elk-1 target selection

Fitted model used to rank potential targets of Elk-1

Predicted target gene Predicted non-target gene

0 1 2 3 4 5 6 7 8 i 0 1 2 3 4 5 6 7 8
time (h) time (h)
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Model-based method for transcription factor
target identification with limited data
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We present a computational method for identifying potential tar-  used for genome-wide scoring of putative target gen
gets of a transcription factor (TF) using wild-type gene expression  is required to apply our method is wild-type time seri
time series data. For each putative target gene we fit a simple dif-  lected over a period where TF activity is changing. Ou
ferential equation model of transcriptional regulation, and the allows for complementary evidence from expression




Cascaded Differential Equations

(Honkela et al., 2010)

v

Transcription factor protein also has governing mRNA.
This mRNA can be measured.
In signalling systems this measurement can be misleading

because it is activated (phosphorylated) transcription factor
that counts.

v

v

v

In development phosphorylation plays less of a role.



Drosophila Mesoderm Development

Collaboration with Furlong Lab in EMBL Heidelberg.
» Mesoderm development in Drosophila melanogaster (fruit fly).

» Mesoderm forms in triplobastic animals (along with ectoderm
and endoderm). Mesoderm develops into muscles, and
circulatory system.

» The transcription factor Twist initiates Drosophila mesoderm
development, resulting in the formation of heart, somatic
muscle, and other cell types.

» Wildtype microarray experiments publicly available.

» Can we use the cascade model to predict viable targets of
Twist?



Cascaded Differential Equations

(Honkela et al., 2010)

We take the production rate of active transcription factor to be

given by
P oy (1) - or (1)
PO _ b s (0) - dg (0

The solution for f(t), setting transient terms to zero, is

f(t) = oexp(—dt) /oty(u) exp (0u)du .



Covariance for Translation/Transcription Model

RBF covariance function for y (t)

f(t) = oexp(—dt) /Ot y(u)exp (du)du

. t
xi(t) =2 +s,-exp(—d,-t)/0 F (u) exp (djur) du.

» Joint distribution y(8) \ \ .

for x1 (t), x2 (),

f () and y (1) 0 Mg Ny N

» Here:

(5[ [s] b | = | Xl(t)\ \ \

1|5 5105 |05
Is[slosios]

y(t) (1) x(t)  x(t)



Joint Sampling of y (t), f (t), and x (t)
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Figure: Joint samples from the ODE covariance, blue: y (t) (mRNA
of TF), black: f (t) (TF concentration), red: x; (t) (high decay
target) and green: x; (t) (low decay target)
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Twist Results

> Use mRNA of Twist as driving input.

» For each gene build a cascade model that forces Twist to be
the only TF.

» Compare fit of this model to a baseline (e.g. similar model
but sensitivity zero).

» Rank according to the likelihood above the baseline.

» Compare with correlation, knockouts and time series network
identification (TSNI) (Della Gatta et al., 2008).



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0002526.



Results for Twi using the Cascade model

x107° Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0003486.



Results for Twi using the Cascade model

Inferred twi protein
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Figure: Model for flybase gene identity FBgn0011206.



Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn00309055.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0031907.



Results for Twi using the Cascade model

Inferred twi protein Driving Input
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Figure: Model for flybase gene identity FBgn0035257.



Results for Twi using the Cascade model
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Figure: Model for flybase gene identity FBgn0039286.



Evaluation methods

» Evaluate the ranking methods by taking a number of
top-ranked targets and record the number of
“positives” (Zinzen et al., 2009):

» targets with ChlIP-chip binding sites within 2 kb of gene
> (targets differentially expressed in TF knock-outs)
» Compare against
» Ranking by correlation of expression profiles
» Ranking by g-value of differential expression in knock-outs
» Optionally focus on genes with annotated expression in tissues
of interest
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» Cascade models allow genomewide analysis of potential
targets given only expression data.

> Once a set of potential candidate targets have been identified,
they can be modelled in a more complex manner.

» We don't have ground truth, but evidence indicates that the
approach can perform as well as knockouts.



Discussion



Discussion and Future Work

v

Integration of probabilistic inference with mechanistic models.

v

Applications in modeling gene expression.
Cascade model introduces model of translation.
Challenges:

» Non linear response and non linear differential equations.

» Scaling up to larger systems.
» Stochastic differential equations.

v

v
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Experimental Structure of Arrays



Molecular biology time series

Antti Honkela

> Biological systems are dynamic, observing their time evolution
very helpful

» Time series measurements of gene expression, protein activity,
protein binding, ...

> Problem: most of these assays are highly disruptive to the
sample

» Therefore: time series = series of independent experiments
run for different lengths of time

» This has implications for modelling...



Simulated molecular biology time series
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Example model: Linear ODE model of transcription

» Linear Activation Model (Barenco et al., 2006, Genome
Biology)
dx; (t)
dt
» xj(t) — concentration of gene j's mRNA

= by + 5f (£) — dg (1)

» f(t) — concentration of active transcription factor
» Model parameters: baseline bj, sensitivity s; and decay d;

» Placing a Gaussian process (GP) prior on f(t) leads to a joint
GP over all concentration profiles (Gao et al., 2008,
Bioinformatics)



How to connect the model to data?

1. Assume independent profiles for each complete (biological)
repeat
» Loses statistical power for extra independence assumptions
> |s it meaningful to order the repeats?
2. Assume one shared underlying profile with independent
observations
» Potentially sensitive to outliers



Exchangeability analysis

Assume xj‘(t,-) observation of kth repeat of jth gene at ith time
xK(6) & XK (6) X () & X ()

“swap arrays”  “swap single gene”
“Reality” Yes No
1. Independent profiles No No

2. Shared profile Yes Yes



Solution: hierarchical GP model

» Assume the underlying f(t) is composed of a shared and an
experiment-specific part fi(t)
dx; (t)
J] _
dr bj + sj[fhared (t) + fix (t)] — djx; ()
» Covariance is of the same form as usual
» Introduces additional covariance terms for measurements from
the same experiment
» Alternative parametrisations of variance of fi(t)

» Shared across all experiments
» Sampled independently for each experiment



Exchangeability analysis revisited

Assume xj‘(t,-) observation of kth repeat of jth gene at ith time
() o XK (6) X () & X ()

“swap arrays’  “swap single gene”
"Reality” Yes No
1. Independent profiles No No
2. Shared profile Yes Yes

3. Hierarchical model Yes No



ODE model of translation and transcription

» Assume TF is transcriptionally regulated with related mRNA
y(t)
» This yields a system of ODEs (Gao et al., 2008)

d’;(tt) — oy (£) - 0F (1)
dx(e) -
g = bt sf(t) - dx (1)

» The corresponding GP model can be derived analogously to
the previous case



Independent profiles
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Hierarchical model
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Nonlinear Response



Nonlinear Response Models

Consider the model of transcription,

dx; (t)

—qr = bitsig(f (1) —dx (1),

where g (+) is a non-linear function. The differential equation can
still be solved,

by t e
()= 3+ [ e g (7 (u)du
J 0



MAP-Laplace Approximation

Laplace's method: approximate posterior mode as Gaussian

p(F|x)= N(?,A—l) o exp (—% (f—f)TA (f—f))

where f = argmaxp(f | x) and A = —VV log p (f | x) l¢_¢ is the
Hessian of the negative posterior at that point. To obtain fand A,

we define the following function 9 (f) as:

log p(flx) oc ¥(F) = log p(x | f) + log p (f)



MAP-Laplace Approximation

Assigning a GP prior distribution to f(t), it then follows that
1 1 n
= —ZfFTK - Zlog|K|— = log?2
log p(f) = —5 > log |K| — 7 log 27

where K is the covariance matrix of f(t). Hence,

Vi (f) = V log p(x|f) — K~1f
VV(f) = VV log p(x|f) — K™ = —W — K1



Estimation of (f)

Newton's method is applied to find the maximum of (f) as

£ = £ — (VV(F)) 7 Vi(f)
— (W + K1)~ (WF — ¥ log p(x]f))
In addition, A = —VV)(f) = W + K~ where W is the negative

Hessian matrix. Hence, the Laplace approximation to the posterior
is a Gaussian with mean f and covariance matrix A~la

p(f %) = N(F,A™Y) = N(F, (W +K)™)



Model Parameter Estimation

The marginal likelihood is useful for estimating the model
parameters 6 and covariance parameters ¢

p(x6,6) = [ p(xf.0)p(fle)df = [ exp (v (M) ar
Using Taylor expansion of 3(f),
2 Lerpe—1e L
log p(x|0, ¢) = log p <x|f,0,¢> - §f K™ f — 5 log [I + KW]|
The parameters n = {6, ¢} can be then estimated by using

Ologp (xin) _ dlogp(xin) | 0log p (x|n) OF
on = on explicit of on




Michaelis-Menten Kinetics

Pei Gao

» The Michaelis-Menten activation model uses the following
non-linearity

) of ()
. )= —
5= g
where we are using a GP f (t) to model the log of the TF
activity.
) Inferred p53 protein N Inferred p53 protein
1.5
1 -~
_10 2 4 6 8 10 12 GO"—" 2 4 6 8 10 12
(a) Linear Response (b) Laplace Approximation

Nonlinear



Valdiation of Laplace Approximation

Michalis Titsias

©o 2 4 6 8 10 12
Figure: Laplace approximation error bars along with samples from the
true posterior distribution.



SOS Response

» DNA damage in bacteria may occur as a result of activity of
antibiotics.

> LexA is bound to the genome preventing transcription of the
SOS genes.

> RecA protein is stimulated by single stranded DNA,
inactivates the LexA repessor.

» This allows several of the LexA targets to transcribe.

» The SOS pathway may be essential in antibiotic resistance
Cirz et al. (2005).

> Aim is to target these proteins to produce drugs to increase
efficacy of antibiotics Lee et al. (2005).



LexA Experimental Description

» Data from Courcelle et al. (2001)

» UV irradiation of E. coli. in both wild-type cells and lexAl
mutants, which are unable to induce genes under LexA
control.

> Response measured with two color hybridization to cDNA
arrays.



Khanin et al. Model

Given measurements of gene expression at N time points
(to, t1,...,tn—1), the temporal profile of a gene i, x; (t), that
solves the ODE in Eq. 1 can be approximated by

b; t
x; () = xPe 9t + =+ s,-e‘dff/ g(f (u))e% du.
0

d;
b N—-2
0,.—dt i —d;t s dit; dit;
i(t)=x7e "+ — 4+ sV —m— fi) (e®HHt — it
xi (t) = x; +di+’ fj+1—tj;g(1)( )

= f(t)+f(t; .
where f; = M on each subinterval
(tj,tj+1),j=0,...,N —2. This is under the simplifying
assumption that f (t) is a piece-wise constant function on each

subinterval (tj, tj + 1). Repression model: g(f(t)) = ﬁ



Khanin et al. Results
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Figure: Fig. 2 from Khanin et al. (2006): Reconstructed activity level of
master repressor LexA, following a UV dose of 40 J/m2.



Khanin et al. Results

Gene expressior
Gene expression
12 14 1

Gene expression
2 s 6
Gene expressi

Time Time

Figure: Fig. 3 from Khanin et al. (2006): Reconstructed profiles for four
genes in the LexA SIM.



Repression Model

Pei Gao

» We can use the same model of repression,

1

g (f(t) = m

In the case of repression we have to include the transient term,

+ b o4
(0= e+ sy [ eI (u))d
J



Results for the repressor LexA

Inferred LexA Activity

recN mRNA

Pei Gao

dinl MRNA

Al
Gamma = 1.0981

S =039202
Alpha = 0.050427

40
lexA mRNA

20 40 60

umuC mRNA

12 g-0ze 5=3.18580-06
oot 0=0011655
Alpha = 0.086826 $=0.77513
Xy Gamma = 098543 Aha = 0052467 Apha=17179
amma = ‘Gamma = 1.0556
08 05/ 0
0 20 40 60 0 20 40 60 0 20 40 60

Figure: Our results using an MLP kernel. From Gao et al. (2008).



Use Samples to Represent Posterior

Michalis Titsias

» Sample in Gaussian processes

p(f[x) o< p (x|f) p ()

> Likelihood relates GP to data through
—dt b ! —d;(t—u)
(1) = age ¥+ 2 gy [ eI Ig(F (u))du
il 0

» We use control points for fast sampling.



MCMC for Non Linear Response

The Metropolis-Hastings algorithm
> Initialize £(©)

> Form a Markov chain. Use a proposal distribution
Q(F(+1)|£(t)) and accept with the M-H step

min (1 P(x|f(t+1))P(f(t+1)) Q(f(t)|f(t+1))>

p(x|[F®)p(F(B))  Q(F(t+1)|f(1))

» f can be very high dimensional (hundreds of points)
» How do we choose the proposal Q(f(t+1)|f(t))?
» Can we use the GP prior p(f) as the proposal?



Sampling using control points

» Separate the points in f into two groups:

» few control points f.
> and the large majority of the remaining points f, = f \ f.

v

Sample the control points f. using a proposal g (f£t+1)|f£t)>

v

Sample the remaining points f, using the conditional GP prior
(t+1) £(t+1)
P (fp Ife )

The whole proposal is
Q (fe+910) = p () (16791

Its like sampling from the prior p(f) but imposing random
walk behaviour through the control points

v

v



Sampling using control points: Regression-Examples

Sample 121 points using 10 control points
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points




Sampling using control points: Regression-Examples
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Sampling using control points: Regression-Examples

Sample 121 points using 10 control points

0 0.2 0.4 0.6 0.8 1



Sampling using control points: Regression-Examples

Sample 121 points using 10 control points

2 ; +

1.55 . *

0 0.2 0.4 0.6 0.8 1



Sampling using control points

Few samples drawn during MCMC




Results on SOS System

Again consider the Michaelis-Menten kinetic equation

v

dxt) _p oo
de 7 Texp(f(t) +

— djxj(t)

v

We have 14 genes (5 kinetic parameters each)

» Gene expressions are available for T = 6 time slots
TF (f) is discretized using 121 points

MCMC details:

» 6 control points are used (placed in a equally spaced grid)

» Running time was 5 hours for 2 million sampling iterations plus
burn in

» Acceptance rate for f after burn in was between 15% — 25%

v

v



Results in E.coli data: Predicted gene expressions

dinF Gene dinl Gene lexA Gene
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Results in E.coli data: Predicted gene expressions

ruvB Gene
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Results in E.coli data: Predicted gene expressions

yebG Gene yjiw Gene




Results in E.coli data: Protein concentration

Inferred protein




Results in E.coli data: Kinetic parameters
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Results in E.coli data: Genes with low sensitivity value
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Results in E.coli data: Confidence intervals for the kinetic

parameters

Basal rates Decay rates
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p53 System Again

» One transcription factor (p53) that acts as an activator. We
consider the Michaelis-Menten kinetic equation

dg(t) _ . ee(fl)
ar D Texp(f(t)) + ()

> We have 5 genes

> Gene expressions are available for T = 7 times and there are 3
replicas of the time series data

» TF (f) is discretized using 121 points
> MCMC details:
» 7 control points are used (placed in a equally spaced grid)

» Running time 4/5 hours for 2 million sampling iterations plus
burn in

» Acceptance rate for f after burn in was between 15% — 25%



Data used by Barenco et al. (2006): Predicted gene

expressions for the 1st replica

DDB2 Gene - first Replica

BIK Gene - first Replica

TNFRSF10b Gene - first Replica

) 2 4 6 8 0 12

Clp1/p21 Gene - first Replica

2

4 6 8
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Data used by Barenco et al. (2006): Protein concentrations

Inferred p53 protein

Inferred ps3 protein Inferred ps3 protein

Inferred protein Inferred protein Inferred protein
07, 07, —
0.6 0.6 25
05 05|
2|
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03 03]
02t S el N e 02|
0.1] S T T 01 .
0 2 2 6 B 10 12 0 2 4 6 B 10 12
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Linear model (Barenco

et al. predictions are shown as crosses)

Nonlinear (Michaelis-Menten kinetic equation)



p53 Data Kinetic parameters

Basal rates Decay rates

sssssssssssssssssssssssssssssssssssssssssssssssssssss

Sensitivities Gamma parameters

wﬂmLﬁﬁﬁm

Our results (grey) compared with Barenco et al. (2006) (black).
Note that Barenco et al. use a linear model
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