Gökhan Yavaş¹ Mehmet Koyutürk^{1,2} Thomas LaFramboise^{2,3} Presented by: Matthew Ruffalo¹

Case Western Reserve University, Cleveland, OH, USA

¹Department of Electrical Engineering and Computer Science

²Department of Genetics

³Center for Proteomics and Bioinformatics

PRIB 2010

Introduction

Biology

Biological Basics

Definition

Copy Number: Quantity of a certain segment or allele in a person's genome (usually 2)

Definition

Copy Number Variation (CNV): Genome segment of at least 1kb in length that varies in copy number from person to person.

Definition

Copy Number Polymorphism (CNP): CNV observed in at least 1% of the population

- -Introduction
 - L Justification

- Significance: various diseases are associated with CNPs, such as
 - HIV acquisition and progression
 - lupus glomerulonephritis etc.
- Algorithms that are specifically designed for common CNP discovery are needed!

- Introduction

L Justification

CNP Identification Framework: POLYGON

- POLYGON: a novel optimization based method for identifying common CNPs
- Uses output of existing CNV detection algorithms

Objective

Assign a copy number to all genome markers in all samples such that the copy number assignment is:

- smooth across all markers
- consitent across all samples

Problem Definition

- ► *M* markers defined on each of *N* samples
- $C = \{0, 1, 2, 3, 4\}$ set of copy number classes
- seeking a set of mappings $S: N \times M \rightarrow C$

Input

- ► a set of CNVs: V = {v₁, v₂,..., v_K} identified by any single-sample CNV detection algorithm (each v ∈ V is a pair (s_v, e_v): start position, end position)
- ► $R_{n,m}$: the raw copy number estimate for each sample marker $(n, m) \in N \times M$

- Methods

POLYGON

Our CNV Identification Framework: POLYGON

Two phases:

- 1. Clustering CNVs to obtain an initial set of *candidate CNPs* (clusters of CNVs that potentially correspond to the same event)
- 2. Fine tuning of the boundaries of candidate CNPs (M_w) and precise estimation of copy number (S_w) in each sample

- Methods

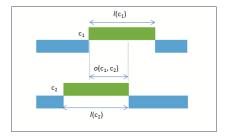
CNV Clustering

CNV Similarity Measure

Minimum Reciprocal Overlap

Used to decide whether two CNVs c_1 and c_2 in two different samples correspond to the same event

$$MRO(c_1, c_2) = \min\left(\frac{o(c_1, c_2)}{l(c_1)}, \frac{o(c_1, c_2)}{l(c_2)}\right)$$



L_Methods

CNV Clustering

CNV Cluster Similarity

Minimum Reciprocal Overlap for CNV clusters ρ_i and ρ_j:

$$MRO(\rho_i, \rho_j) = \min_{\mathbf{v}_q \in \rho_i, \mathbf{v}_p \in \rho_j} \{MRO(\mathbf{v}_q, \mathbf{v}_p)\}$$

- Methods

CNV Clustering

Agglomerative Clustering Process

- Each cluster initially contains a single CNV
- At each iteration, two clusters with maximum overlap are merged
- Clustering stops when the MRO between any two clusters drops below 0.5
- After completion, all CNVs in the same cluster ... have at least 50% mutual overlap

- Methods

CNV Clustering

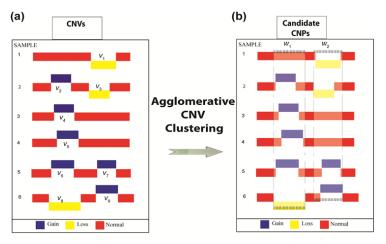


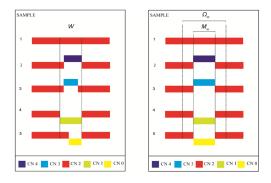
Figure: CNV Clustering Result

- Methods

CNP Boundary Adjustment

CNP Boundary Adjustment

For each CNP region w spanning a set of markers M_w, select a window Ω_w where M_w is allowed to be enlarged or shrunk such that I(Ω_w) = 2I(M_w) (with lengths defined in terms of the number of genome markers).



- Methods

└ Objective Function Definition

How to find the best S_w and M_w ?

Find S_w and M_w that minimize the following objective function:

$$f(M_{w}, S_{w}) = k_{\sigma}\sigma(M_{w}, S_{w}) + k_{\chi}\chi(M_{w}, S_{w}) + k_{\lambda}\lambda(M_{w})$$

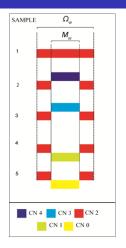
 $\lambda(M_w) = \frac{1}{2^{l_w}}$ defines the reliability of a CNP in terms of its length.

- Methods

-Objective Function Definition

In-class Variation Component σ

- Variation in raw copy numbers within each copy number class should be minimized.
- ▶ µ(□) denotes the mean raw copy number for the corresponding class in window w



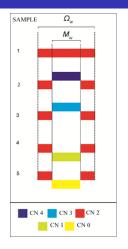
$$\sigma (M_w, S_w): \Sigma^{[\bullet]-\mu(\bullet)]+\Sigma^$$

- Methods

-Objective Function Definition

Inter-class Variation Component χ

- Variation in raw copy numbers across different copy number classes should be maximized.
- µ(□) denotes the mean raw copy number for the corresponding class in window w



 $\chi(M_w, S_w): \ 2^{1/(\mu(\underline{m})-\mu(\underline{m}))} + 2^{1/(\mu(\underline{m})-\mu(\underline{m}))} + 2^{1/(\mu(\underline{m})-\mu(\underline{m}))} + 2^{1/(\mu(\underline{m})-\mu(\underline{m}))}$

- Methods

Algorithm for CNP Genotype Optimization

Algorithm for CNP Genotype Optimization

Overview

- ► Solution: marker boundaries M_w and copy number genotype $S_w(n)$ for each sample $n \in N$.
- ► To find an optimal solution, find an optimal S_w for each possible M_w and choose the best among all possible assignments of M_w.
- Each CNP region is limited to a fixed window Ω_w, which makes this exhaustive search feasible.

- Methods

LAlgorithm for CNP Genotype Optimization

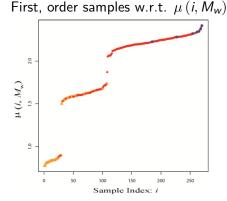
Optimal CNP genotyping for fixed boundaries

We define the mean raw copy number of markers within M_w in sample n as:

$$\mu\left(n,M_{w}\right)=\frac{\sum_{m\in M_{w}}R_{n,m}}{I_{w}}$$

Methods

Algorithm for CNP Genotype Optimization

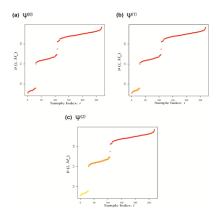


- Each point represents the mean raw copy value of a sample in region M_w.
- In the figure, the initial class assignments done by a single-sample method are shown.

- Methods

Algorithm for CNP Genotype Optimization

- Genotype all with copy number class 2
- Next, use a split & ripple shift strategy until no more valid splits are left or f(M_w, S_w) does not improve.



- Methods

└─Algorithm for CNP Genotype Optimization

- Use the optimal CNP genotyping algorithm on each possible boundary in Ω_w.
- Optimal boundaries of the CNP are set to the coordinates of minimum value in the heat map, and optimal genotype is assigned as before.

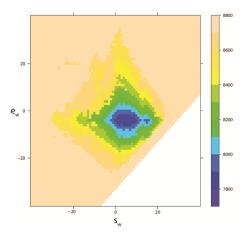


Figure: Example heat map of $f\left(M_{w}^{(a,b)}, S_{w}^{(a,b)}\right)$ at the optimal genotype solution for each candidate boundary (a, b), recentered to (0,0) for demonstration purposes

Results

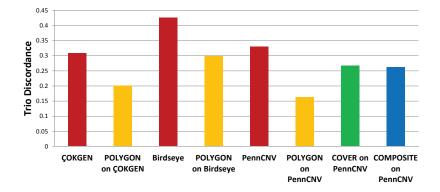
Performance of POLYGON in Comparison to Existing Software:

- COMPOSITE & COVER (Mei et al., 2010)
- POLYGON performance evaluation used the following single-sample CNV tools:
 - ÇOKGEN (Yavaş et al., 2009)
 - PennCNV (Wang et al., 2007)
 - Birdseye (Korn et al., 2008)

Results

└─ Trio Discordance

Trio Discordance Performance



Results

Sensitivity

Sensitivity¹ Performance

	ÇOKGEN	PennCNV	Birdseye
Initial sensitivity	86%	88.6%	84.7%
Sensitivity by POLYGON	88.3%	88.6%	89.9%
Sensitivity by COMPOSITE	N/A	62.8%	N/A
Sensitivity by COVER	N/A	40.2%	N/A

¹Sensitivity on a previously reported set of CNVs (Pinto et al., 2007)

Results

Sensitivity

Sensitivity Performance

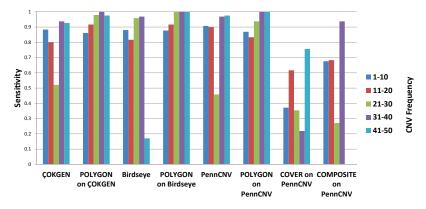


Figure: Sensitivity vs. CNV frequency across different tools

Acknowledgments

Acknowledgments

Figure: Gökhan Yavaş

Figure: Mehmet Koyutürk

Figure: Tom LaFramboise

- Supported in part by National Science Foundation Award IIS-0916102
- Dr. Meral Özsoyoğlu, EECS department, Case Western Reserve University