

Unité de Recherche UTIC Pôle Bioinformatique Laboratoire d'Etudes et de Recherche en Informatique d'Angers

Iterated Local Search for Biclustering of Microarray Data

Wassim AYADI^{1, 2}, Mourad ELLOUMI¹ and Jin-Kao HAO²

¹ Unit of Technologies of Information and Communication, UTIC, Tunis, Tunisia

² Laboratoire d'Etude et de Recherche en Informatique d'Angers, LERIA, Angers, France

PRIB 2010

22-24 Septembre 2010

Nijmegen, The Netherlands

Outline

- Introduction
- Iterated Local Search
- The BILS algorithm
- Results & Conclusion

- DNA microarray datasets are one of the most used data types in Bioinformatics
- It is generally represented by $n \times m$ matrix M
- Each row represents a gene and each column represents a data sample or condition

$$M = (m_{ij})_{n \times m}$$

where the value *m_{ij}* is the expression of i-th gene in **j**-th condition

 Analysing these datastes can give a valuable information on the biological relevance of genes and correlations between them

Why Biclustering?

How to identify genes with similar behavior with respect to different conditions?

- Given a data matrix *M(I, J)*, biclustering algorithms allow to extract *a* group of biclusters that maximize a given evaluation function
- The biclustering problem is NP-hard

Definitions

- Let m_{ij} be the expression level of the i-th gene in the j-th condition
- A bicluster is a subset of a data matrix M
 (I,J), I = {I,...,n} and J= {I,...,m}
- A bicluster is a pair (l', J') where:
 - \circ I' is a subset of genes, I' \subseteq I
 - \circ J' is a subset of conditions, J' \subseteq I

Biclustering approaches

- The systematic search approach:
 - greedy algorithms
 - divide-and conquer algorithms
 - enumeration algorithms
- The metaheuristic approach:
 - neighbourhood-based algorithms
 - evolutionary algorithms

ITERATED LOCAL SEARCH

ILS – procedure Iterated Local Search

s₀ ← GenerateInitialSolution s*←LocalSearch (s₀) repeat • s'←Perturbation(s*)

- ∘ s*'←LocalSearch(s')
- s*←AcceptanceCriterion(s*, s*')

until termination condition met

THE BILS ALGORITHM

Behavior Matrix M'

$$M'[i,l] = \begin{cases} 1 & \text{if } M[i,k] < M[i,q] \\ -1 & \text{if } M[i,k] > M[i,q] \\ 0 & \text{if } M[i,k] = M[i,q] \end{cases}$$

with $i \in [1..n], l \in [1..J''], k \in [1..m - 1], q \in [1..m]$ and q > k + 1.

•The preprocessing step aims to highlight the trajectory patterns of genes

•Each column of *M* ' represents the trajectory of genes between a pair of conditions in the data matrix *M*

•The whole *M' matrix provides* useful information for the identification of related biclusters

•Genes are considered to be in the same cluster if their trajectory patterns of expression levels are similar across a set of conditions Wassim Ayadi, PRIB 2010, Nijmegen

11

Initial solution

s₀: Initial bicluster obtained from the original data matrix using a fast greedy algorithm

Local search

- s₀ is processed by removing one gene having a bad score and adding another gene or several having good scores
- Added genes do not belong initially to s₀
- Scores are computed by an evaluation function
- Each application of this dual drop/add operation generates a new bicluster (s*) from the current one

Evaluation function

The quality of a bicluster (s=(l',J')) is assessed
 by an evaluation function S given below:

$$\mathbb{S}(s) = \frac{\sum_{i \in I'} \sum_{j \in I', j > i+1} \mathcal{F}_{ij}(g_i, g_j)}{|I'|(|I'| - 1)/2}$$

with $\mathcal{F}_{ij}(.,.)$ being defined by:

$$\mathcal{F}_{ij}(g_i, g_j) = \frac{\displaystyle\sum_{l \in J_{s_0}''} T(M'[i, l] = M'[j, l])}{|J_{s_0}''|}$$

where

- -T(Func) is true, if and only if Func is true, and T(Func) is false otherwise.
- $-i \in I', j \in I'$ and $i \neq j$, when \mathcal{F} is used by \mathbb{S} and, $i \in I, j \in I$ and $i \neq j$ otherwise.
- $-|J_{s_0}''|$ is the cardinality of the subset of conditions in M' obtained from s_0 ,

$$-0 \leq \mathcal{F}_{ij}(g_i, g_j) \leq 1.$$

Perturbation operator

- The perturbation of the best solution (s*) is made to generate a new starting point (s') for the next round of the search
- This perturbation operator changes the best local optimum by:
 - deleting randomly 10% of genes of the best solution
 - adding 10% of genes among the best genes (which have good scores)
 - The added genes are not included previously in the best solution

BILS – algorithm Stop condition

- The whole BILS algorithm stops when:
 - the best bicluster reaches a fixed threshold
 - the best solution found is do not change for a fixed number of perturbations

EXPERIMENTAL RESULTS

Yeast data set (Tavazoie et al., 99)

- 2884 genes and 17 conditions
- To obtain the initial solution (the input of BILS), we considered biclusters obtained using CC and OPSM algorithms
- Evaluation of biclusters using the two web tools:
 - Funcassociate for statistic evaluation
 - GoTermFinder is used for biological evaluation

RESULTS Yeast data set

• Funcassociate: Statistical significance

Algorithm	P-value < 0.001
СС	10%
OPSM	22%
BILS	100%

\rightarrow BILS improves all biclusters of CC and OPSM

RESULTS Yeast data set

Algorithms	Maximum p-value	Minimum p-value
CC	0.000010	4.096e-40
BILS	2.220e-17	2.860e-70
OPSM	0.0000012	1.587e-13
BILS	1.156e-10	4.865e-24

RESULTS

Yeast data set

• GoTermFinder: Biological significance

Algorithms	Biological Process	Molecular function	Cellular component
CC	unknown	unknown	Cytoplasm
(B_CC_{MaxP})			(0.00932)
$BILS_{CC}$:	Maturation of SSU-rRNA	structural constituent	cytosolic ribosome
improved	(4.54e-05)	of ribosome $(4.14e-17)$	(2.94e-21)
B_CC_{MaxP}	Maturation of SSU-rRNA	Structural molecule activity	ribosomal subunit
by BILS	from tricistronic rRNA	(1.97e-15)	(4.27e-17)
	transcript(SSU-rRNA, 5.8S		cytosolic part
	rRNA, LSU-rRNA)		(2.04e-16)
	(0.00088)		
	Cell cycle (0.00107)		
CC	translation	structural constituent	cytosolic ribosome
(B_CC_{MinP})	(8.33e-23)	of ribosome	(7.83e-42)
	cellular protein	(1.03e-36)	ribosome (3.80e-36)
	metabolic process	structural molecule	cytosolic part
	(3.17e-10)	activity (3.91e-28)	(1.82e-35)
	gene expression	helicase activity	
	(6.48e-10)	(0.00021)	
$BILS_{CC}$:	translation	structural constituent	cytosolic ribosome
improved	(2.86e-35)	of ribosome $(2.50e-70)$	(1.05e-76)
B_CC_{MinP}	cellular protein	Structural molecule activity	ribosomal subunit
by BILS	metabolic process	(6.06e-54)	(1.08e-68)
	(2.59e-16)	translation factor	cytosolic part
	cellular macromolecule	activity, nucleic acid	(1.01e-66)
	biosynthetic process	binding (0.00445)	
	(1.74e-15)		

Algorithms	Biological Process	Molecular function	Cellular component
OPSM	sister chromatid	unknown	spindle
(B_OPSM_{MaxP})	segregation (0.00337)		(0.00196)
	chromosome segregation		microtubule cytoskeleton
	(0.00478)		(0.00295)
	microtubule-based process		chromosomal part
	(0.00588)		(0.00991)
BILS _{OPSM} :	cellular component	structural constituent	nucleus
improved	organization (1.71e-07)	of cytoskeleton	(3.83e-12)
B_OPSM_{MaxP}	nucleic acid	(0.00099)	nuclear part
by BILS	metabolic process (1.72e-06)	RNA polymerase II	(3.91e-09)
	cellular nitrogen	transcription factor	chromosomal
	compound metabolic process	(0.00640)	(2.26e-08)
	(7.88e-06)		
OPSM	unknown	oxidoreductase activity	unknown
(B_OPSM_{MinP})		(6.78e-06)	
		oxidoreductase activity,	
		acting on CH-OH group	
		of donors (0.00075)	
		oxidoreductase activity,	
		acting on peroxidase	
		as acceptor	
		(0.00078)	
BILS _{OPSM} :	response to stimulus	structural constituent	cytosolic ribosome
improved	(0.00092)	of ribosome	(1.09e-23)
B_OPSM_{MinP}	response to stress	(9.19e-24)	ribosomal subunit
by BILS	(0.00454)	structural molecule	(3.28e-23)
		activity (3.78e-12)	cytosolic part
		oxidoreductase activity	(7.35e-22)
		(2.36e-05)	

CONCLUSIONS

0

CONCLUSIONS

- A new biclustering algorithm using Iterative Local Search (BILS) was proposed
- BILS employs a new evaluation function
- Experimental results show that the BILS algorithm can successfully improve all biclusters of CC and OPSM according to statistical and biological evaluation criteria

Future work

- Make a study on neighborhoods to introduce more biological knowledge in order to provide more effective guidance of the local search process
- BILS explores the space of biclusters by changing only the subset of genes of a bicluster without changing the conditions of the initial bicluster
- We aim to design similar strategies to optimize the subset of conditions of a bicluster or eventually to optimize simultaneously both the set of genes and conditions

Future work

 Another possible experimentation is to assess the algorithm on a synthetic data

THANK YOU

0