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2. The amino acid sequences to be aligned are treated as results of independent random 
insertions/substitutions applied to random hidden ancestors of the same preset smaller 
length.  

3. The immediate goal of the analysis is estimating the common probabilistic profile of 
the hidden ancestors as a sequence of independent probability distributions over the 
alphabet of amino acids.  

4. The algorithm yields the posterior distribution over the set of all multiple alignments. 
The most probable one of them is considered as the final result.  
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Aα ∈

ψ α α =∑  for all i Aα ∈  

Dayhoff’s main assumptions on the Markov chain:  
– ergodicity, namely, existence of a final probability distribution over A  

( ) ( ) ( | )j i

i

j i

Aα ∈

ξ α = ξ α ψ α α∑  for all j Aα ∈  

– reversibility, namely, invariance to time inversion  
( ) ( | ) ( ) ( | )  for all ,i j Aα α ∈  i j i j i jξ α ψ α α = ξ α ψ α α
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Notations  
 

{ }1 20  – the set (alphabet) of amino acids  ,...,A = α α

( , 1,..., )t A t N  – amino acid sequence of length = ω ∈ = ωω Nω   
n  – an integer called the order of the multiple alignment, namely, the assumed number of 
common columns .  

n≥Ω  – the set of all amino acid sequences of length   N n≥ω

nΩ  – the set of all amino acid sequences of fixed length N n=ω   
{ }, , 1,...,n j jN n j M∗

≥Ω = ≥ =ω  – the given finite set of amino acid sequences to be aligned  
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The final multiple alignment  
Combination of individual pair-wise alignments of the given sequences with the found common profile.  
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The essence of the iterative EM (Expectation-Maximization) procedure aimed at solving this optimization 
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Choosing the length of the common profile  
 
Each of  columns in the common profile is a probability distribution over the amino acid alphabet.  

n
n

The idea: The most appropriate  must provide the minimum average entropy of these distribution:  
20

1 1

1ˆ arg min ln
n

k k
i i

n i k

n n
= =

⎛ ⎞
= − β β⎜ ⎟

⎝ ⎠
∑∑  

 



 41 

Choosing the length of the common profile  
 
Each of  columns in the common profile is a probability distribution over the amino acid alphabet.  

n
n

The idea: The most appropriate  must provide the minimum average entropy of these distribution:  
20

1 1

1ˆ arg min ln
n

k k
i i

n i k

n n
= =

⎛ ⎞
= − β β⎜ ⎟

⎝ ⎠
∑∑  

 
The most probable multiple alignment  

The -column profile n β̂  found as the maximum-likelihood estimate: 
ˆ arg max ln ( | )nF ∗

≥= Ω
β

β β  

The a posterior distribution over the set of possible multiple alignments relevant to the set of proteins:  

,
ˆ ˆ( , ) ( | , )it s j j i s jp P v t= =β ω β ω . 
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The idea: The a posteriori most probable alignment will be given by the solutions of separate optimization 
problems corresponding to single proteins , 1,...,j j M=ω : 
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For each protein 1,...,j M= , this is a standard dynamic programming problem.  
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Experimental setup 
• Alignment benchmark: BAliBase 3.0  
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• Prediction accuracy assessment:  o SP – sum of pairs score,  
o TC – total column score. 
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Experimental comparison of multiple alignment procedures in BAliBase 3.0 
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Experimental comparison of multiple alignment procedures in BAliBase 3.0 

 
Statistics of comparing the proposed approach with ProbAlign  
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Conclusions  

• The proposed formal approach to multiple alignment is based on a 
deliberately simplified model of protein evolution.  

• The iterative procedure of solving the respective optimization problem is 
based on the well-known EM algorithm.  

• The first experiments have shown that this approach outperforms, in 
average, other methods of multiple alignment by mean values of TC and 
SP scores.  

• It does not yield the best scores for all considered cases, but as a rule, 
our method shows small decreasing and large increasing of scores in 
comparison to other methods.  

 
 


