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Background
1. Only few of existing multiple alignment methods, such as multidimensional dynamic
programming, are underlaid by a mathematically strict problem formulation.
2. However, mathematically sound methods are computationally too hard.
3. Fast heuristic algorithms are essentially less relevant from the biological point of view.

The main idea of our approach

1. A simplest probabilistic model of protein evolution:
relatively straightforward generalization the PAM model (developed by M. Dayhoff for
the alphabet of single amino acids) onto amino acid sequences.

2. The amino acid sequences to be aligned are treated as results of independent random
Insertions/substitutions applied to random hidden ancestors of the same preset smaller
length.

3. The immediate goal of the analysis is estimating the common probabilistic profile of
the hidden ancestors as a sequence of independent probability distributions over the
alphabet of amino acids.

4. The algorithm yields the posterior distribution over the set of all multiple alignments.
The most probable one of them is considered as the final result.
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Margaret Dayhoff’s PAM model of evolution
within the amino acid alphabet

The set (alphabet) of amino acids: A={a,...,0”}
The PAM (Point Accepted Mutation) model of amino acid comparison represents
predispositions of amino acids towards mutative transformations.
Markov chain of amino acid evolution represented by transition probabilities matrix for
the accepted evolutionary step

Y= (\|/(ocj| a'), a0l e A) (20x 20), Z y(a'|a')=1forall o' € A

aleA
Dayhoff’s main assumptions on the Markov chain:
— ergodicity, namely, existence of a final probability distribution over A
E(a)) = Z E(a)y(a! |a') forall ' e A
a'eA
— reversibility, namely, invariance to time inversion
E()y(o |a)=E(a)y(a' |a’) forall o',a' e A



Notations

A= {ocl, oczo} — the set (alphabet) of amino acids

o=(o,eAt=1..,N_)—amino acid sequence of length N
n —an integer called the order of the multiple alignment, namely, the assumed number of

common columns .
Q.. —the set of all amino acid sequences of length N_ >n

Q_ — the set of all amino acid sequences of fixed length N_ =n
Q. = {(oj, N, >n, j=1..,M } — the given finite set of amino acid sequences to be aligned

VvV % =S
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Hypothesis 1

Each sequence in ; = (o, €A t=1..,N;, >n) e Q: hasevolved from a specific ancestor
3, =(8; € Ai=1..,n)eQ, through independent known random transformation Py, (@]9§)),

ZQEQN_ P, ((Dl‘gj) =1.
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The length n of the random ancestors 8§; € Q3 Is fixed, and their elements (8,,,...,8,) are drawn from the amino
acid alphabet A in accordance with a common sequence of independent probability distributions

(Bi(®)i=1..n),9€A, > B(9=L1

The sequence of these distributions forms a prgbabilistic profile of the “fuzzy”” common ancestor
B=(BeR® i=1..n).

21



Hypothesis 1

Each sequence in ; = (o, €A t=1..,N, >n) e Q: hasevolved from a specific ancestor
3, =(8; € Ai=1..,n)eQ, through independent known random transformation Py, (@]9)),

ZQEQN_ P, ((Dl‘gj) =1.

Hypothesis 2

The length n of the random ancestors 8§; € Q3 Is fixed, and their elements (8,,,...,8,) are drawn from the amino
acid alphabet A in accordance with a common sequence of independent probability distributions

(B(9)i=1...0), 8 A, 3 B(®)=1.
The sequence of these distributions forms a prgbabilistic profile of the “fuzzy”” common ancestor

B=(BeR® i=1..n).
Let ( p.(8|B), Qe Qn) be the respective parametric distribution family.

22



Hypothesis 1

Each sequence in ; = (o, €A t=1..,N, >n) e Q: hasevolved from a specific ancestor
3, =(8; € Ai=1..,n)eQ, through independent known random transformation Py, (@]9)),

ZmegNj P, (o] Sj) =1.
Hypothesis 2

The length n of the random ancestors 8§; € Q3 Is fixed, and their elements (8,,,...,8,) are drawn from the amino
acid alphabet A in accordance with a common sequence of independent probability distributions

(B(9)i=1...0), 8 A, 3 B(®)=1.
The sequence of these distributions forms a prgbabilistic profile of the “fuzzy”” common ancestor

B=(BeR® i=1..n).
Let ( p.(8|B), Qe Qn) be the respective parametric distribution family.

The first intermediate goal of the analysis
For the accepted family of transformation distributions Py, (o]9;), itis required to estimate the common

probabilistic profile B = (B,eR*,i=1,...,n) of the preset length n.

23



24

Hypothesis 1

Each sequence in ; = (o, €A t=1..,N, >n) e Q: hasevolved from a specific ancestor
3, =(8; € Ai=1..,n)eQ, through independent known random transformation Py, (@]9)),

ZQEQN_ P, ((Dl‘gj) =1.

Hypothesis 2

The length n of the random ancestors 8§; € Q3 Is fixed, and their elements (8,,,...,8,) are drawn from the amino
acid alphabet A in accordance with a common sequence of independent probability distributions

(Bi(®)i=1..n),9€A, > B(9=L1
The sequence of these distributions forms a prgbabilistic profile of the “fuzzy”” common ancestor
B=(BeR® i=1..n).
Let ( p.(8|B), Qe Qn) be the respective parametric distribution family.

The first intermediate goal of the analysis
For the accepted family of transformation distributions Py, (o]9;), itis required to estimate the common

probabilistic profile B = (B,eR*,i=1,...,n) of the preset length n.

The final multiple alignment
Combination of individual pair-wise alignments of the given sequences with the found common profile.
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Three constituents

1. Random structure of the transformation:

Unilateral alignment of the ancestor to the resulting

sequence V=, V) eV, V<N
t : Vl

o A preset probability distribution:
\K ff/ qun(V):qN|n(Vll'--1Vn)
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Random noncompressing transformation of the ancestor ¢ (0]8):

Three constituents

1. Random structure of the transformation:
Unilateral alignment of the ancestor to the resulting
seguence

t=1 vl

NV

i=12 3

v=(

A preset probability distribution:
Onin (v)= Anjn (Vyseos V)

Ve V) € Vs Vo <N

n

2. Random key subsequence

NV

i=12 3

®, =(0,,..,0, ),
T~|n((7)v |‘9’V) = Hin:]_W(wvi | S|)

%/_/
Dayhoff’s conditional
probabilities
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Random noncompressing transformation of the ancestor ¢ (0]8):

Three constituents

1. Random structure of the transformation:
Unilateral alignment of the ancestor to the resulting

sequence V=, V) eV, V<N
t=1 V
® O 2 A preset probability distribution:
\X f/o/ qN|n(V):qN|n(V1""’Vn)
=12 3
2. Random key subsequence ®, = (0,0, ),
"’\\ f// (@, 19.9) =TT, (o, 19)
%/_J
Dayhoff’s conditional
i1 2 3 probabilities

3. Random addltlonal subsequence

®wooo \\ /‘/’/' Absolutely randomly drawn amino acids

i=12 3




30

Random noncompressing transformation of the ancestor ¢ (0]8):

Three constituents

1. Random structure of the transformation:
Unilateral alignment of the ancestor to the resulting
seguence

t=1 vl

NV

i=12 3

v=(

A preset probability distribution:
Onin (v)= Anjn (Visees V)

Vi V) € Vi Vo <N

2. Random key subsequence

NV

i=12 3

o, =(oovl,...,oovn),

T~|n((7)v | ‘9’ V) = Hin:]_W(wvi | S|)

%/_/
Dayhoff’s conditional
probabilities

3. Random addltlonal subsequence

NV

i=12 3

Absolutely randomly drawn amino acids

All in all, we have the resultlng parametric conditional distribution family of a single protein in terms of

the unknown common probabilistic profile:

C.>N|n ((D | B’V)




Maximum-likelihood estimation of the common profile

The general scenario once again:
Q. ={o;,N;2n, j=1..,M| —the given finite set of amino acid sequences independently generated

from the unknown probabilistic profile p = (Bie R%i=1.., n) to be estimated.
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from the unknown probabilistic profile p = (Bie R%i=1.., n) to be estimated.
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B B o T e |
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Maximum-likelihood estimation of the common profile

The general scenario once again:
Q. ={o;,N;2n, j=1..,M| —the given finite set of amino acid sequences independently generated

from the unknown probabilistic profile p = (Bie R%i=1.., n) to be estimated.
Thus, the likelihood function is the product: F(Q:_|B) = HM un () IB)

The likelihood estimate: [3 argn max InF(Q |B)=arg maxz n>’ v Auyn (V)G (@ IB.v))

V € |
The essence of the iterative EM (Expectatlon MaX|m|zat|on) procedure almed at solving this optimization
problem is based on the fact that the given set of proteins Q. = { o, ]=1...M } Is considered as the

observable part of the two-component random object (Q: , Y, ) whose hidden part
T, =(v;eVy, 1=1...M) Is the collection of sequence-specific transformation structures.
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problem is based on the fact that the given set of proteins Q= { o, ]=1...M } Is considered as the

observable part of the two-component random object (Q: , Y, ) whose hidden part
T, =(v;eVy, 1=1...M) Is the collection of sequence-specific transformation structures.

Random structure of the transformation:

Unilateral alignment of the ancestor to the resulting
sequence Vi=j5aVin) €V p Vo <N
t=123 Vv,

Vv, Vv, Vo, N
N N S A preset probability distribution:
Y\S Ao (v)= Anjn (Vyyes V)

i=123 N
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The general scenario once again:
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Thus, the likelihood function is the product: F(Q:_|B) = HM un () IB)
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The essence of the iterative EM (Expectatlon MaX|m|zat|on) procedure almed at solving this optimization
problem is based on the fact that the given set of proteins Q= { o, ]=1...M } Is considered as the

observable part of the two-component random object (Q: , Y, ) whose hidden part
T, =(v;eVy, 1=1...M) Is the collection of sequence-specific transformation structures.

Let B, = (B, ---,Bn,s) be approximation to the solution at step S. Then, the a posteriori probabilities of the
events v, ; =t are completely defined: p; (Es,coj) = P(Vj,i:”Es,@j)

V.—t

0) OOO ON) VJ :(Vj,lv-"lvj,n)EVij’ VJ,nSNJ
Vi =1
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Maximum-likelihood estimation of the common profile
The general scenario once again:
Q. ={o;, N;2n, j=1..,M| —the given finite set of amino acid sequences independently generated

from the unknown probabilistic profile p = (Bie R%i=1.., n) to be estimated.
Thus, the likelihood function is the product: F(Q:_|B) = HM un () IB)

The likelihood estimate: [3 argn maxln F(Q |B)=arg maxz |”Zv O W(V)E (@, IB.v,)

The essence of the iterative EM (Expectatlon MaX|m|zat|on) procedure almed at solving this optimization
problem is based on the fact that the given set of proteins Q= { o, ]=1...M } IS considered as the

observable part of the two-component random object (Q: , Y, ) whose hidden part

T, =(v, eVlen, J =1,...,M) is the collection of sequence-specific transformation structures.
Let B, = (B, ---,Bn,s) be approximation to the solution at step S. Then, the a posteriori probabilities of the
events v, ; =t are completely defined: p; (Es,coj) = P(Vj,i:”Es,@j)
The EM procedure boils down to independent computing each column
(B si1= (BisuarsBios), 0< B,y <1) of the best common profile B,,, = (B, .;,---:B, ;) at the next step:
(B o1 B2) = argmax > S S Uil o=a' | p(B0)IN Y wa' [ahB,

(B_l _____ [320) ]RZO
> BK=L B0
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Maximum-likelihood estimation of the common profile

The general scenario once again:
Q. ={o;, N;2n, j=1..,M| —the given finite set of amino acid sequences independently generated

from the unknown probabilistic profile p = (Bie R%i=1.., n) to be estimated.
Thus, the likelihood function is the product: F(Q:_|B) = HM un () IB)

The likelihood estimate: [3 argn maxln F(Q |B)=arg maxz |”Zv O W(V)Ey (@ IB.v,)

The essence of the iterative EM (Expectatlon MaX|m|zat|on) procedure almed at solving this optimization
problem is based on the fact that the given set of proteins Q= { o, ]=1...M } IS considered as the

observable part of the two-component random object (Q: , Y, ) whose hidden part
T, =(v;eVy, 1=1....M) Is the collection of sequence-specific transformation structures.

Let B, = (B, ---,Bn,s) be approximation to the solution at step S. Then, the a posteriori probabilities of the
events v, ; =t are completely defined: p; (Es,coj) = P(Vj,i:”Es,@j)

The EM procedure boils down to independent computing each column

(Bi,s+1: (Bil,s+1' BI s+1) O BI S+l — ) Of the beSt common prOfIIe Bs+1 (Bl s+11* Bn,s+1) at the neXt Step:
(B B2) = argmax 3 "0 S i o=a' | pBo0) N, wia' [a)B;,

(Bi B )R
> BK=L B0
Theorem. This choice provides that the inequality F(Q:, |B..,) > F (€2, |B,) holds true at each step s

while VF (QZ, |B,) # 0; if V;F(Q, |B,) =0 then F(Q, |B,,.) = F(QL, |B,).



Choosing the length of the common profile

Each of n columns in the common profile is a probability distribution over the amino acid alphabet.
The idea: The most appropriate n must provide the minimum average entropy of these distribution:

N = arg min(—%iiﬁf In B:‘j

i=1 k=1
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Choosing the length of the common profile

Each of n columns in the common profile is a probability distribution over the amino acid alphabet.
The idea: The most appropriate n must provide the minimum average entropy of these distribution:

n= arg:nin[—%éiﬁik In B:‘j
_The most probable multiple alignment

The n-column profile B found as the maximum-likelihood estimate:
B =argmaxInF(Q |B)
B

The a posterior distribution over the set of possible multiple alignments relevant to the set of proteins:

pit(gs’wj): P(Vj,i:tlgs’mj)-
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Choosing the length of the common profile

Each of n columns in the common profile is a probability distribution over the amino acid alphabet.
The idea: The most appropriate n must provide the minimum average entropy of these distribution:

A =arg mm[——ZZB InB! j
=1 k=1
The most probable multiple alignment
The n-column profile B found as the maximum-likelihood estimate:

B =argmaxInF(Q |B)
B

The a posterior distribution over the set of possible multiple alignments relevant to the set of proteins:
pit(ps’mj) = P(Vj,i:t | [_33’(”])-

The idea: The a posteriori most probable alignment will be given by the solutions of separate optimization
problems corresponding to single proteins @, j=1,....M :

Vi _(le’ an) argmaXH pIV (B ('0)

V.2V, 01=2,..,n

]l j,i-11
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Choosing the length of the common profile

Each of n columns in the common profile is a probability distribution over the amino acid alphabet.
The idea: The most appropriate n must provide the minimum average entropy of these distribution:

A =arg mm[——ZZB InB! j
=1 k=1
The most probable multiple alignment
The n-column profile B found as the maximum-likelihood estimate:

B =argmaxInF(Q |B)
B

The a posterior distribution over the set of possible multiple alignments relevant to the set of proteins:
pit(ps’mj) = P(Vj,i:t | [_33’(”])-

The idea: The a posteriori most probable alignment will be given by the solutions of separate optimization
problems corresponding to single proteins @, j=1,....M :

Vi _(le’ an) argmaXH pIV (B ('0)

Vi 2V, 1=2,...0n.

j,i-11
For each protein j=1,...,M, this is a standard dynamic programming problem.
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e Alignment benchmark: BAliBase 3.0

44



Experimental setup

e Alignment benchmark: BAliBase 3.0
o A manually-refined benchmark alignment — all columns are aligned:

I | | I
(a taho_ -~ -8 - -1 - B - B - B - : HVRTKG - PGR -[H- - - 64
ibmr -E- - S - - - B

NVGI IVEGEK -BHS - - &7
(A cecieeimaccaac..---KDEMPVDS - KGEKLSHY - - - ANNYBDNOBRMKKA SGRHEBYA - - - - - | NAKVSDSATNIBG- - - 60
AEP_MESMA MKLFLLLVISASMLIDGLVNA

SCAT_MESMA -MKIIIFLIVCSFVLIGVKAD

DKTWKS -ESNTERGGKK B85
= GNY SELWAY -ETNKENGKM 85
EIGS KT A - - - DVKLYGDDGTYB®SS - - 66

SCXB ANDAL -8- BN _N BN SN BN G / _
SCX6_CENLL -MNSLLMI IGCLVL IGTVWT v YELGDNGYRED YRR T - - - - - SKPTWPLPGKSEBSGK - 85
BIRT PARTR -=---=--B 20 20 ¢ PLDK - DI FLLGG vay - - = EYBRookosv- - - B - 58

10rm

Conservator, - 11 e e s 1 e, AU e 0 e Dt 11 e 1L 0T s [

45



Experimental setup
e Alignment benchmark: BAliBase 3.0
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o A manually-refined benchmark alignment — all columns are aligned:

| | | |

Y HVRTKG-PGR-BH- - - 64
NVGI | VEGEK - BHS - - 67
..... : NAKVSDSATNIBG- - - 60
AEP_MESMA MKLFLLLVISASMLIDGLVN DKTWKS - ESNTEGGKK 85
SCAT_MESMA -MKI1IFLIVCSFVLIGVKAD L =ik 3 SELWAY - ETNKENGKM 85
8SCXB ANDAU -=.--C-..B.0-.00.00. EIGS { THEEYA - - - - - DVKLYGDDGTYRSS - - 66
SCX6_CENLL -MNSLLMIIGCLVLIGTVWT YELGDNGYRBD YRYRYT - - - - - SKPTWPLPGKSBSGK - 85
BRTPARTR -5 .50. B 50 20 0 -D FLLGGNEERLNVEKL HGVOYBYRYA - - - - - EYBRDDOKDSY - - - - - Q- - - - 58

10rm

Conservaton 1 e e e | i 1 -nnnnnﬂ ame | Ieee | |y g 5] |y se——euy | ¥

laho_ - - - - === - s s oo
(a 1)) U

e Characteristic features of proposed alignment: only ungapped columns

are aligned:

T T i |
(b)mm_ ------------------- v .B-E. E ---GPGRCH---- 64
M ~eeeceesesacnceanan v \-Q-P- - - -VEGEKCHS - - 67
BfA <==esscccssccasccasenns V.D-S§- .--DSATNICG- - 60
AEP MESMA MKLFLLLVISASMLIDGLVN - . .2 R-G-S- ---SESNTCGGKK 85
SCAT MESMA -MK1 1 IFLIVCSFVLIGVKA - - .- - - -YETNKCNGKM 85
SCXB ANDAU === =-===s=scemenmnn G---F VKN -G - ---GDDGTYCSS- 66
SCX6 CENLL -MNSLLMIIGCLVLIGTVWT - - . '-"Hg- --8CSGK----- 85
BIRT PARTR - - -« - ------------ ADV ... L-D-K- HGVOYSNE - - - - -¥- - ASKEWBEYEBODKDS - - - - M-« ---vvvvnnn- 58
Conservation ™ T 7 | = 13 1]
A J




Experimental setup
e Alignment benchmark: BAliBase 3.0
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o A manually-refined benchmark alignment — all columns are aligned:

a 1ahu_ ................... - - : GE3 THR HVRTKG - PGR
o -§--08--0-5 -0 - - AQP - - -G8SG GTS NAEBDNVG | | VEGEK
e i B E & N 3 - - - ANNY - : EGLBENAKVSDSATN

AEP_MESMA MKLFLLLVISASML IDGLVN
SCAT_MESMA -MK11I1FLIVCSFVLIGVKAD
scxs_ANDAL -8 . .. BN_S_ BN
SCX6_CENLL -MNSLLMIIGCLVL IGTVWT

-BH--- 64
-BHS - - &7
IBG- - - 60

DKTWKS - ESNTEGGKK 85
SELWAY -ETNKENGKM 85
DVKLYGDDGTYBSS - - 66
SKPTWPLPGKSEBSGK - 85

BIRTPARTR 2. B8 _J == = X ADVP : - 3 : EY HEOSY - - -85 -§-58 - st
10rm
Conservaton, e 1 evs v e 0 e A b0 bl Dt el N T e [

e Characteristic features of proposed alignment: only ungapped columns
are aligned:

i T 7 |

(b)mm_ ------------------- V... .D- | ---GPGRCH---- 64
{hOy, = cmw e o ann i V... .0- - . -VEGEKCHS - - 67
I ¥.-D- AS( ---DSATNICG- - &0
AEP_MESMA MKLFLLLV1SASMLIDGLVN ... -G- , - - -SESNTCGGKK 85
SCAT MESMA -MK 11 IFLIVCSFVLIGVKA - - - L-N- N’ - - -YETNKCNGKM 85
SCXB ANDAU === === s=smeenmennnn G--- N- AK] ---GDDGTYCSS- 66
SCX6 CENLL -MNSLLMI IGCLVLIGTVWT - - - -N SCSGK- - - - - 85
BIRT PARTR - - - - v cooooone - ADV - .. -D- [ 58
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i v

- _ o SP — sum of pairs score,
e Prediction accuracy assessment:

o TC - total column score.
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Experimental comparison of multiple alignment procedures in BAliBase 3.0

Set | Family | CLUSTALW | DIALIGN | ProbAlign |The proposed
approach
laab 0.92/0.96 0.91/0.93 | 0.83/0.87 | 0.99/0.99
- laboA 0.00/0.38 0.00/0.00 | 0.00/0.54 0.00/0.45
= 1bbt3 0.00/0.20 0.00/0.00 | 0.29/0.42 | 0.28/0.36
= lesy 0.37/0.42 0.31/0.37 | 0.46/0.56 | 0.51/0.56
1dox 0.00/0.24 0.40/0.46 | 0.62/0.71 | 0.64/0.75
laxo 0.29/0.54 0.54/0.64 | 0.69/0.87 | 0.87/0.93
a 1fj1A 1.00/1.00 0.69/0.76 | 0.79/0.84 | 1.00/1.00
= Lhfh 0.68/0.78 0.39/0.53 | 0.78/0.85 | 0.75/0.85
= Thpi 0.59/0.72 0.37/0.57 | 0.40/0.55 | 0.75/0.82
lkrn 0.53/0.69 0.47/0.68 | 0.60/0.75 | 0.79/0.88
lidy 0.00/0.62 0.00/0.00 | 0.00/0.33 0.00/0.60
3 lpamA 0.43/0.77 0.29/0.58 | 0.74/0.84 | 0.69/0.83
> | 1pgtA 0.47/0.49 0.14/0.52 | 0.26/0.69 0.27/0.68
= M ovxA 0.00/0.64 0.00/0.00 | 0.00/0.41 0.00/0.46
Tubi 0.00/0.68 0.00/0.03 | 0.09/0.49 0.08/0.48
mean 0.35/0.61 0.30/0.41 | 0.44/0.65 | 0.51/0.71
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Statistics of comparing the proposed approach with ProbAlign

TC / SP

The number of cases when our proposed approach
is better or equal

11(73%) / 10(67%)

The mean increment of scores 0.112 / 0.127
The mean percentage increment of scores 23% / 21%
The mean decrement of scores 0.025 / 0.036

The mean percentage decrement of scores

6% / 7.1%




50
Conclusions

e The proposed formal approach to multiple alignment is based on a
deliberately simplified model of protein evolution.

e The iterative procedure of solving the respective optimization problem is
based on the well-known EM algorithm.

e The first experiments have shown that this approach outperforms, in
average, other methods of multiple alignment by mean values of TC and
SP scores.

e It does not yield the best scores for all considered cases, but as a rule,
our method shows small decreasing and large increasing of scores In
comparison to other methods.



