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Background

• Networks (e.g. genes, proteins,
metabolites) important notion in
current biology.

• Statistical models called Probabilistic
Graphical Models (PGM) are a key
approach

• Example of signalling network; RTK.
(Weinberg 2007, Yarden &

Sliwkowski 2001)
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Graphical Models

• Stochastic Models where a graph is
used to describe probability
relationships between components.

• Graph specifies the form of
conditional independence
statements.

• Graph must be directed and acyclic
(DAG).

Special cases include HMMs, Bayesian
Networks (BN), Dynamics BNs.
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Bayesian Framework

Interested in the probability of a certain graph G given some observed
data X.

For certain models it is possible to obtain closed form for posterior
probability upto a constant.

P(G |X) ∝ P(X|G )P(G )

Maximising P(G |X) can have robustness problems; If posterior has
several highly scoring graphs how do we choose between them?

• For this reason we use model averaging.
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Model Averaging

Probability E (e) of seeing an edge e averaged over all graphs G is
more robust.

• Edges which repeatedly appear in likely graphs have high E (e).

Knowledge of proportionality constant requires enumeration of whole
p-node DAG space G.

• G grows super-exponentially with p.

Thus we must use MCMC to estimate the posterior probabilities
P(G |X).
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Monte Carlo

• Move around G by performing elementary
moves on current graph G .

• Accept or reject new graphs G ′ based on MH
acceptance probability;

α =
P(X|G ′)|η(G )|
P(X|G )|η(G ′)|

(for uniform priors)

Called MC3 (Madigan & York 1995)

Addition

ReversalDeletion

Neighbourhood η(G) is all

graphs reachable from G .

Estimate of posterior probability given by

P̂(G |X) =
1

tmax

tmax∑
t=1

I (g (t) = G )
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Sample Size
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Having more data is clearly a good thing.

• High Throughput exprements, FACS,
etc...

Catuion!

In certain situations large sample size N
can cause problems.

MC3 guaranteed to converge given
enough time but can be slow.
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Motivation

· Posterior for p=4 node system with two
different sample sizes N = 5 and N = 10

· Posterior mass concentrates on a few
highly likely graphs.

· If these are hard to get between Markov
chain mixing is slow.

Note: As N → ∞ we pick out all graphs from the

correct data generating class.
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MC4 Scheme

• Aim is to allow Markov chains (MC) to
move between high scoring graphs.

• Utilise physics approach of parallel
tempering.

• Couple high temperature MCs to one
with desired posterior.

T

Temperature analogy
acheived by raising
posterior score to β = 1

T :

P(G |X)β ∝ (P(X|G )P(G ) )β
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MC4 Scheme

Set up m MCs at temperatures T1, ...Tm.

MCs at higher temperature can explore the space more freely.

• Each chain simulated using often used MH scheme.

Every iteration randomly swap graphs between neighbouring chains i
and j with probability pswap

• Accept the swap with probability ρ.

Swapping probability

ρ =
(P(X|Gj)P(Gj))βi (P(X|Gi )P(Gi ))βj

(P(X|Gi )P(Gi ))βi (P(X|Gj)P(Gj))βj
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Simulation

First we examine performance on synthetic data generated from the
known network shown earlier.

Data is generated using

• A ∼ N(0, σ) for parent nodes.

• C ∼ N(A + B + γAB, σ) for child nodes.
(with parents A and B)

Since we know the underlying graph from which the data were
generated we can draw ROC curves...
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ROC Curves

Curves paramterised by threshold t; keep in output graph all edges with
E (e) > t.
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MC4 has picked up fewer false positive edges compared to MC3 for the same

number of true edges.

(Xie & Geng 2008)
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ROC Curves
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Proteomic Data

Such methods are only useful if they provide a benefit in practical problems.

We examine here the application to inferring the underlying DBN from a set
of proteomic data.

Due to certain factorisation for DBNs we can calculate exact edge
probabilities.

• Gives us gold standard comparison!

We examine;

• Correlation ρ between the exact and MC estimated edge
probabilities.

• Normalised sum difference s between the exact and MC
estimated edge probs.
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Edge Probabilities
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T =1.0,1.25,1.5,1.75,2.0 and pswap = 0.1, averaged over 4 runs.
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Edge Probabilities

If we look at the individual edge probabilities we see better performace

(closer to x = y) for MC4:
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Toughest edges to infer are significantly better estimated by MC4.
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Conclusions

• As sample size increases posterior mass can concentrate around several
hard to move between graphs.

• Widely employed MCMC schemes can fail to estimate edges properly in
these increasingly common situations.

• Counter this by using higher temperature chains coupled to desired
posterior: MC4/PT.

• Important to draw robust conclusions from biological data.
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