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Introduction

Quantitative Models of Biological Networks

System of Ordinary Differential Equations (ODE)

@ x(t) : state variables at time t

@ protein concentrations
@ mRNA concentrations
e metabolite concentrations

@ f: encodes the structure of the system

nonlinear function
Michaelis-Menten / Hill kinetics
Mass action kinetics

@ 0: parameter set (kinetic parameters, rate constants,...)
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Introduction

Reverse Modeling of Biological Networks

@ An ODE model (Initial Value Problem): x(0) = xo and

x(t) = f(t, x(1),0)
@ A partially and noisy observation model:
y(t) = h(x(1)) + €(t)

where h is a nonlinear observation function, €(t) is a i.i.d noise

@ A sequence of observed data : yon—1 = {Yo, ..., yn—1} at time
fo=0,t,.., -1
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Introduction

Reverse Modeling of Biological Networks

@ An ODE model (Initial Value Problem): x(0) = xo and
x(t) = f(t, x(t),0)
@ A partially and noisy observation model:
y(t) = h(x(t)) + €(t)

where h is a nonlinear observation function, €(t) is a i.i.d noise

@ A sequence of observed data : yon—1 = {Yo, ..., yn—1} at time
fo=0,t,.., -1

@ Estimation of parameters 6
@ Estimation of states x(t) (partially observed)

— Need for estimation of initial conditions (usually unknown / observed
with noise)

Brunel, d’Alché-Buc Flow-based Bayesian Estimation of Nonlinear Differential Equations



Introduction

Reminder: Initial Value Problem

@ Parametrized ODE:
x(t) = f(t, x(t),0) (1)

defined for t € [0, T] (T > 0), and f is a vector field indexed by a
parameter § € © C RP.

@ Under general conditions on f (typically Lipschitz in x), there exists a
unique solution to (1) for a given initial value x(0) = xo on the interval
[0, T].

@ The solution for parameter 6 and initial value xo is denoted
¢t o (t X0)-

@ ¢ : Xo — ¢o (t,X0) is the flow of the ODE (action of the vector field in the
state space).
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Introduction

Proposed approach

@ Search for reconstructed trajectories corresponding to a solution of the
ODE with given parameter estimates

@ In state-space model approach, the dependence on initial conditions is
forgotten: introduction of the Flow method

@ Monte Carlo approximation of the posterior distribution
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Introduction

Augmented initial condition

@ Let’s define:
{ x(t) = f(tx(1),0(1)) B
o(t) =0
@ Augmented initial condition z; = (xo, 0).
@ The solution is the function t — ¢ (¢, z) from [0, T] to RP*?.
@ New setting:

2ty =t 2(D)
{2(0) -2 ®)
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Introduction

State-Space Model interpretation

Recursive definition of the state-space model

The dynamical system is observed at discrete-time points t, ..., fn—1

Z,1 = Fn(zn)
Yy» = h(zn)+en

with t
n+1
Fn(zn) = é(tn,20) = 20 + / f(7,2(7); 20)dr
tn
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Introduction

State-Space Model interpretation

Recursive definition of the state-space model

The dynamical system is observed at discrete-time points t, ..., fn—1

Z,1 = Fn(zn)
Yy» = h(zn)+en

with 1
n+1
Fn(zn) = é(tn,20) = 20 + / f(7,2(7); 20)dr
tn

A non recursive expression for the hidden states

tn
Zo+ f(z(7),2z0)dr
0

¢(fn,Zo)

Zp
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Introduction

Bayesian estimation of the augmented initial condition 1

@ Collection of the observed time series (Imperfect observation of the
system):
Yo, -5 YN—1
@ Choice of a prior distribution:

1 (Zo)

(more or less classical choice)

@ Focus on the Posterior Mean among possible Bayesian estimator (i.e.
Posterior Least Square Error Estimate):

20 = /ZOP(ZO|YO:N—1)dZo

@ Approximation of my_1 = p(2o|yo.n—1) (no closed-form) and of Z.
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Introduction

Bayesian estimation of the augmented initial condition 2

@ Homoscedasticity assumption: o2 x I, € R™™
@ Gaussian Noise — Gaussian Likelihood

L(Yon—1 20) < o~ ™ exp (—e(yon-1, Z)) (4)

with e(yon-1,20) = 552 Sivo' Ivi — h(6(t, 20))|1%.
@ Posterior distribution of the parameter z:

P(20|Yo:n—1) ox exp (—e(Yon-1,20)) 7—1(20) (5)
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A Population Monte Carlo approach

Stochastic simulation or Monte Carlo methods

@ Monte Carlo = approximation of an expectation by the sample mean of a
function of simulated random variables.

@ Application in Bayesian Inference: approximate p(zo|yo.n—1) and
estimate E[Zo|yo.n—1]
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A Population Monte Carlo approach

Importance Sampling

@ Given a target density p and a proposal density g,
o Estimate £,[Z] = [ z.p(2)dz = [ z.58 q(2)dz
@ Using (&1,...,¢&m), aiid sample from the distribution Q of density g
EZ)= LM wg
{ Pl2) = 5 S we )

P&
Wi = q&)

a(

@ Density p is known up to the normalizing constant: one uses

self-normalized weights W, = —-
2 W

@ Necessary condition of consistency: p has its support included in the
support of g

@ Limit theorems (Large numbers, Central Limit Theorem) guarantee
convergence of IS (and rate of convergence) when M — oo
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A Population Monte Carlo approach

Population Monte Carlo (PMC) and lterative Importance Sampling
Resampling

@ Importance Sampling Resampling: Resample &,i = 1,..., M with a
multinomial M (W;) (with replacement)

@ Population Monte Carlo: lterative construction of new samples
(populations) by "improving" the proposal distribution q;, t =1,..., T:

@ Ateach step t:
@ Generate (&¢)1<i<m ~ G (i.i.d sampling) and compute normalized weights

Wi.t,
©Q Resample (5,71)1 <i<m by multinomial sampling with weights
|;(I/I',hi: 17"'7

@ Construct gy.1 from ((&,¢r, Wi,pr))1<i<mo<r <t
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A Population Monte Carlo approach

PMC and Adaptive Importance Sampling Resampling:

@ Proposal densities? D-kernel PMC (Douc et al., AOS, 2007) uses a
mixture of D transition kernels

{ it =C&it—1+ €t
it~ D agN(0,Zay)

@ Adaptivity ?
o Possible sizes of jumps represented by different 4
o Adaptivity by augmenting the probability of components N(0, X ;) which
ameliorate the likelihood
o The idea is to make the proposal density closer to the target density
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A Population Monte Carlo approach

D — kernel PMC: Learning algorithm

@ Minimization of Kullback-Leibler divergence w.r.t the objective function
@ EM-like algorithm used for the estimation of the mixture parameters
ag,d=1,...,D
@ At t = 0: generate () by IS-Resampling and start with a% = 1/D.
@ Fort=1,...,T
@ Generate index J ; € [1, .., D] with J; s ~ M(M, ()
@ Generate independent moves &t~ KJi’[(ﬁiY[,1,z)
© Compute the normalized importance weights:

TN—1(&it)
g ol Ka(&ii—1,6it)

© Resample (¢ ;) into (Ei,t) by multinomial sampling M(M, W; ;)
@ Update mixture weights:

‘7'/,"[ X
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Numerical simulations on real problems

Numerical simulations

@ Estimate parameters in a biochemical network (Isomerization of
a—pinene network)

@ Noninformative uniform prior on an interval centered in true parameters
e N=8,M=5000,D=7,T =20
@ Only parameters p;’s to be learnt (initial conditions are known)
@ og=10"1...,10"5
@ Estimate parameters in a regulatory network (Repressilator network)
o N = 25 (simulated date), M = 1000,D=7,T =10
@ Comparison of several Monte Carlo (Bayesian) methods: Unscented
Kalman Smoothing, Flow-Based Estimate with Importance Sampling,
Flow-Based Estimate with PMC

Brunel, d'Alché-Buc Flow-based Bayesian Estimation of Nonlinear Differential Equations



Numerical simulations on real problems

Isomerization of a—pinene network

@ Biochemical reactions

@ |somerization of a—pinene (y1) to dipentene (y2) and allo-ocimen (y3)
which in turn yields a— and 8 — pyronene (y4) and a dimer (y5)

Ps
P, Ys — > Y4
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Numerical simulations on real problems

Differential equations for a«—pinene network

@ Linear model with 5 equations

X1 = —(p1+p2)x

X = piX

X3 P2X1 — (Ps + Pa)Xs + PsXs (8)
Xs = PsXs

Xs = [aXs+ PsXs

@ 5 rate constants 6 = (py, ..., ps) to be estimated,
@ Initial conditions are known.
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Numerical simulations on real problems

Parameter estimation

@ Results and comparisons on real dataset (Banga, 2006)

[ x107° [ Reference [ UKS ]| FBE-IS [ FBE-PMC ]
P 5.92 3.66+56 | 598+1.3x 102 | 593+4.7 x 10
P2 2.96 25+48 | 292+13x10 % | 296+5x 10"
P 2.04 1.784£20.4 | 2.05+£5.69 x 10 2.06 +2 x 10~
Ps 27.44 27.3+£31.1 | 26.7£5.69 x 10 2 [ 27.89 £ 10 x 102
Ps 3.99 424+£26 | 353131 x 102 | 411 £52x 10~
6— o 0 23 x107° 8.2x 107° 4.5x107°

Table: Estimated parameter values with UKS, IS and PMC with standard deviation.
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Numerical simulations on real problems

Population evolution and adaptativity in a—pinene

Figure: Adaptive ISR and reduction of weight degeneracy with D = 3 and T = 20:
mixture coefficients ay and entropy of the population weights
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Numerical simulations on real problems

ODE solution after parameter estimation
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Numerical simulations on real problems

Repressilator, [Elowitz, Nature 2000]

P lacO1 % vmax k1,72 _ kmFINAr1
dt "okptps
% max k2r73 __ |/mRNA I
at 2 Kp+py C
pSC101 n
origin % Vmax k31 _ kmeNA rs
dt K +py °
dp tei
Y1 Kiry — kpro ein
ot 11 1 P1
P tet01 dpz protein
—_= koo — K.
ot 202 5 P2
aps j
Y3 Kafa — kprote/n
dt 33 3 Ps3

@ mRNAs are observed, proteins are hidden

@ mRNA and protein degradation rate constants are supposed to be known
@ Estimate 9 parameters and initial conditions
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Numerical simulations on real problems

@ Parameter estimation

Results for the Repressilator for N = 25 observations

Parameter | True Parameter UKS FBE-IS FBE-PMC
v 150 147.3+0.9 | 150.24+-0.09 | 150.0 + 0.46
vy 80 819+17 80.7 £0.49 80.2+0.66
vy 100 102.2+1.7 | 100.7 +£0.25 | 100.1 + 0.91

ki 50 53.0+0.9 50.7 +0.05 50.1 +0.35
ko 30 37.14+0.94 | 30.9+0.08 29.94+0.38
ks 40 4764+0.8 | 40.72+0.03 | 40.04-0.36
@ Initial conditions for hidden variables

Parameter | True UKS FBE-IS FBE-PMC

p1(0) 1 97.84+59 | 3.11+0.21 | 2.86+0.09

p2(0) 2 143.6 +3.0 | 3.83+0.21 | 3.51 £0.10

ps3(0) 3 148.54+8.6 | 476 +£0.17 | 4.75+0.27
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Conclusion

Conclusion and perspective

@ Introduction of the Flow for retrieving exact solution of the ODE (specific
to deterministic hidden process driven by ODE)
@ First results — better estimate and better ODE equation at the end
e Population Monte Carlo to approximate posterior probability
@ D-PMC of Douc et al. implemented and tested
@ Current and future work
e Study the impact of non recursive definition e.g. integration on all the time
interval (and recursive version of a learning algorithm?)
o Impact of prior choice
o Other proposal densities and other rules for adaptive ISR: M-PMC (mixture
of Gaussian distributions)
e Combine structure and parameter learning in a single PMC scheme
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