Flow-based Bayesian Estimation of Nonlinear Differential Equations for Modeling Biological Network

Nicolas Brunel and Florence d'Alché-Buc

IBISC Université d'Evry, France ANR Support: GD2GS Project and ODESSA Project

Nijmegen, PRIB 2010

- A Population Monte Carlo approach
- 3 Numerical simulations on real problems

A Population Monte Carlo approach Numerical simulations on real problems Conclusion

Quantitative Models of Biological Networks

System of Ordinary Differential Equations (ODE)

$$\dot{x} = f(t, x(t); \theta)$$

- x(t) : state variables at time t
 - protein concentrations
 - mRNA concentrations
 - metabolite concentrations
- f : encodes the structure of the system
 - nonlinear function
 - Michaelis-Menten / Hill kinetics
 - Mass action kinetics
 - ...
- θ: parameter set (kinetic parameters, rate constants,...)

< □ > < 同 > < 回 > < 回 > .

A Population Monte Carlo approach Numerical simulations on real problems Conclusion

Reverse Modeling of Biological Networks

Given

• An ODE model (Initial Value Problem): $x(0) = x_0$ and

 $\dot{x}(t) = f(t, x(t), \theta)$

• A partially and noisy observation model:

 $y(t) = h(x(t)) + \epsilon(t)$

where *h* is a nonlinear observation function, $\epsilon(t)$ is a i.i.d noise

• A sequence of observed data : $y_{0:N-1} = \{y_0, ..., y_{N-1}\}$ at time $t_0 = 0, t_1, ..., t_{N-1}$

< ロ > < 同 > < 三 > < 三 > -

A Population Monte Carlo approach Numerical simulations on real problems Conclusion

Reverse Modeling of Biological Networks

Given

• An ODE model (Initial Value Problem): $x(0) = x_0$ and

 $\dot{x}(t) = f(t, x(t), \theta)$

• A partially and noisy observation model:

$$y(t) = h(x(t)) + \epsilon(t)$$

where *h* is a nonlinear observation function, $\epsilon(t)$ is a i.i.d noise

• A sequence of observed data : $y_{0:N-1} = \{y_0, ..., y_{N-1}\}$ at time $t_0 = 0, t_1, ..., t_{N-1}$

Goal

- Estimation of parameters θ
- Estimation of states x(t) (partially observed)

 \implies Need for estimation of initial conditions (usually unknown / observed with noise)

A Population Monte Carlo approach Numerical simulations on real problems Conclusion

Reminder: Initial Value Problem

Parametrized ODE:

$$\dot{\mathbf{x}}(t) = f(t, \mathbf{x}(t), \theta) \tag{1}$$

defined for $t \in [0, T]$ (T > 0), and f is a vector field indexed by a parameter $\theta \in \Theta \subset \mathbb{R}^{p}$.

- Under general conditions on *f* (typically Lipschitz in *x*), there exists a unique solution to (1) for a given initial value *x*(0) = *x*₀ on the interval [0, *T*].
- The solution for parameter θ and initial value x_0 is denoted $\phi : t \mapsto \phi_{\theta}(t, x_0)$.
- φ : x₀ → φ_θ (t, x₀) is the flow of the ODE (action of the vector field in the state space).

< □ > < 同 > < 回 > < 回 > .

A Population Monte Carlo approach Numerical simulations on real problems Conclusion

Proposed approach

- Search for reconstructed trajectories corresponding to a solution of the ODE with given parameter estimates
- In state-space model approach, the dependence on initial conditions is forgotten: introduction of the Flow method
- Monte Carlo approximation of the posterior distribution

< ロ > < 同 > < 回 > < 回 > < 回 > <

A Population Monte Carlo approach Numerical simulations on real problems Conclusion

Augmented initial condition

Let's define:

$$\begin{cases} \dot{x}(t) = f(t, x(t), \theta(t)) \\ \dot{\theta}(t) = 0 \end{cases}$$
(2)

- Augmented initial condition $z_0 = (x_0, \theta)$.
- The solution is the function $t \mapsto \phi(t, z_0)$ from [0, T] to \mathbb{R}^{p+d} .
- New setting:

$$\begin{cases} \dot{z}(t) = f(t, z(t)) \\ z(0) = z_0 \end{cases}$$
(3)

A Population Monte Carlo approach Numerical simulations on real problems Conclusion

State-Space Model interpretation

Recursive definition of the state-space model

The dynamical system is observed at discrete-time points $t_0, ..., t_{N-1}$

$$\mathbf{z}_{n+1} = \mathbf{F}_n(\mathbf{z}_n)$$

 $\mathbf{y}_n = \mathbf{h}(\mathbf{z}_n) + \boldsymbol{\epsilon}_n$

with

$$\mathbf{F}_n(\mathbf{z}_n) = \phi(t_n, \mathbf{z}_0) = \mathbf{z}_n + \int_{t_n}^{t_{n+1}} \mathbf{f}(\tau, \mathbf{z}(\tau); \mathbf{z}_0) d\tau$$

A Population Monte Carlo approach Numerical simulations on real problems Conclusion

State-Space Model interpretation

Recursive definition of the state-space model

The dynamical system is observed at discrete-time points $t_0, ..., t_{N-1}$

$$\mathbf{z}_{n+1} = \mathbf{F}_n(\mathbf{z}_n)$$

 $\mathbf{y}_n = \mathbf{h}(\mathbf{z}_n) + \boldsymbol{\epsilon}_n$

with

$$\mathbf{F}_n(\mathbf{z}_n) = \phi(t_n, \mathbf{z}_0) = \mathbf{z}_n + \int_{t_n}^{t_{n+1}} \mathbf{f}(\tau, \mathbf{z}(\tau); \mathbf{z}_0) d\tau$$

A non recursive expression for the hidden states

$$\mathbf{z}_n = \mathbf{z}_0 + \int_0^{t_n} f(\mathbf{z}(\tau), \mathbf{z}_0) d\tau$$
$$= \phi(t_n, \mathbf{z}_0)$$

ヘロン 人間と 人団と 人団と Flow-based Bayesian Estimation of Nonlinear Differential Equations

A Population Monte Carlo approach Numerical simulations on real problems Conclusion

Bayesian estimation of the augmented initial condition 1

Collection of the observed time series (Imperfect observation of the system):

Choice of a prior distribution:

$$\pi_{-1}(Z_0)$$

(more or less classical choice)

• Focus on the Posterior Mean among possible Bayesian estimator (i.e. Posterior Least Square Error Estimate):

$$\hat{z}_0 = \int z_0 p(z_0 | y_{0:N-1}) dz_0$$

• Approximation of $\pi_{N-1} = p(z_0|y_{0:N-1})$ (no closed-form) and of \hat{z}_0 .

< ロ > < 同 > < 回 > < 回 >

A Population Monte Carlo approach Numerical simulations on real problems Conclusion

Bayesian estimation of the augmented initial condition 2

- Homoscedasticity assumption: $\sigma^2 \times I_m \in \mathbb{R}^{m \times m}$
- Gaussian Noise \implies Gaussian Likelihood

$$L(y_{0:N-1}; z_0) \propto \sigma^{-mN} \exp\left(-e(y_{0:N-1}, z_0)\right)$$
 (4)

with $e(y_{0:N-1}, z_0) = \frac{1}{2\sigma^2} \sum_{i=0}^{N-1} \|y_i - h(\phi(t_i, z_0))\|^2$.

• Posterior distribution of the parameter *z*₀:

$$p(z_0|y_{0:N-1}) \propto \exp\left(-e(y_{0:N-1}, z_0)\right) \pi_{-1}(z_0)$$
(5)

A (10) A (10) A (10) A

A Population Monte Carlo approach Numerical simulations on real problems Conclusion

- A Population Monte Carlo approach
 - 3 Numerical simulations on real problems

< ロ > < 同 > < 回 > < 回 >

Stochastic simulation or Monte Carlo methods

- Monte Carlo = approximation of an expectation by the sample mean of a function of simulated random variables.
- Application in Bayesian Inference: approximate p(z₀|y_{0:n-1}) and estimate E[z₀|y_{0:n-1}]

< □ > < 同 > < 回 > < 回 > .

Importance Sampling

- Given a target density p and a proposal density q,
- Estimate $E_p[Z] = \int z \cdot p(z) dz = \int z \cdot \frac{p(z)}{q(z)} q(z) dz$
- Using (ξ_1, \ldots, ξ_M) , a iid sample from the distribution Q of density q

$$\begin{cases} \hat{E}_{\rho}[Z] = \frac{1}{M} \sum_{i=1}^{M} w_i \xi_i \\ w_i = \frac{\rho(\xi_i)}{q(\xi_i)} \end{cases}$$
(6)

- Density *p* is known up to the normalizing constant: one uses self-normalized weights $\tilde{w}_i = \frac{w_i}{\sum_{i=1}^{M} w_i}$
- Necessary condition of consistency: p has its support included in the support of q
- Limit theorems (Large numbers, Central Limit Theorem) guarantee convergence of IS (and rate of convergence) when $M \longrightarrow \infty$

Population Monte Carlo (PMC) and Iterative Importance Sampling Resampling

- Importance Sampling Resampling: Resample ξ_i, i = 1,..., M with a multinomial M(w̃_i) (with replacement)
- Population Monte Carlo: Iterative construction of new samples (populations) by "improving" the proposal distribution q_t, t = 1,..., T:
- At each step t:
 - Generate $(\xi_{i,t})_{1 \le i \le M} \sim q_t$ (i.i.d sampling) and compute normalized weights $\tilde{w}_{i,t}$,
 - 8 Resample $(\tilde{\xi}_{i,t})_{1 \le i \le M}$ by multinomial sampling with weights $\tilde{w}_{i,t}, i = 1, \dots, M$
 - Sonstruct q_{t+1} from $((\tilde{\xi}_{i,t'}, \tilde{w}_{i,t'}))_{1 \le i \le M, 0 \le t' \le t}$

< ロ > < 同 > < 三 > < 三 > -

PMC and Adaptive Importance Sampling Resampling:

• Proposal densities? *D*-kernel PMC (Douc et al., AOS, 2007) uses a mixture of *D* transition kernels

$$\begin{cases} \xi_{i,t} = \xi_{i,t-1} + \epsilon_{i,t} \\ \epsilon_{i,t} \sim \sum_{d=1}^{D} \alpha_d N(\mathbf{0}, \Sigma_{d,t}) \end{cases}$$
(7)

- Adaptivity ?
 - Possible sizes of jumps represented by different Σ_d
 - Adaptivity by augmenting the probability of components N(0, Σ_{d,t}) which ameliorate the likelihood
 - The idea is to make the proposal density closer to the target density

< ロ > < 同 > < 回 > < 回 >

D – *kernel* PMC: Learning algorithm

- Minimization of Kullback-Leibler divergence w.r.t the objective function
- EM-like algorithm used for the estimation of the mixture parameters $\alpha_d, d = 1, \dots, D$
- At t = 0: generate $(\tilde{\xi}_{i,0})$ by IS-Resampling and start with $\alpha_d^0 = 1/D$.
- For *t* = 1, ..., *T*
 - Generate index $J_{i,t} \in [1, .., D]$ with $J_{i,t} \sim \mathcal{M}(M, (\alpha_d^t))$
 - **②** Generate independent moves $\xi_{i,t} \sim K_{J_{i,t}}(\xi_{i,t-1}, z)$
 - Ompute the normalized importance weights:

$$\tilde{\mathbf{w}}_{i,t} \propto \frac{\pi_{N-1}(\xi_{i,t})}{\sum_{d} \alpha_{d}^{t} K_{d}(\tilde{\xi}_{i,t-1},\xi_{i,t})}$$

$$\alpha_d^{t+1} = \sum_{i/J_{i,t} = d} \tilde{w}_{i,t}$$

< □ > < 同 > < 回 > < 回 > .

Outline

- 2 A Population Monte Carlo approach
- 3 Numerical simulations on real problems

4 Conclusion

Numerical simulations

- Estimate parameters in a biochemical network (Isomerization of $\alpha-{\rm pinene}$ network)
 - Noninformative uniform prior on an interval centered in true parameters
 - *N* = 8, *M* = 5000, *D* = 7, *T* = 20
 - Only parameters p_i's to be learnt (initial conditions are known)

•
$$\sigma_d = 10^{-11}, \dots, 10^{-5}$$

Estimate parameters in a regulatory network (Repressilator network)

N = 25 (simulated date), M = 1000, D = 7, T = 10

 Comparison of several Monte Carlo (Bayesian) methods: Unscented Kalman Smoothing, Flow-Based Estimate with Importance Sampling, Flow-Based Estimate with PMC

< ロ > < 同 > < 回 > < 回 > < 回 > <

Isomerization of α -pinene network

- Biochemical reactions
- Isomerization of α-pinene (y1) to dipentene (y2) and allo-ocimen (y3) which in turn yields α- and β pyronene (y4) and a dimer (y5)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Differential equations for α -pinene network

Linear model with 5 equations

$$\begin{pmatrix} \dot{x}_1 &= -(p_1 + p_2)x_1 \\ \dot{x}_2 &= p_1x_1 \\ \dot{x}_3 &= p_2x_1 - (p_3 + p_4)x_3 + p_5x_5 \\ \dot{x}_4 &= p_3x_3 \\ \dot{x}_5 &= p_4x_3 + p_5x_5 \end{cases}$$
(8)

- 5 rate constants $\theta = (p_1, \dots, p_5)$ to be estimated,
- Initial conditions are known.

イロト イ団ト イヨト イヨト

Parameter estimation

• Results and comparisons on real dataset (Banga, 2006)

×10 ⁻⁵	Reference	UKS	FBE–IS	FBE–PMC
<i>p</i> 1	5.92	3.66 ± 5.6	$5.98 \pm 1.3 imes 10^{-2}$	$5.93 \pm 4.7 imes 10^{-2}$
<i>p</i> ₂	2.96	$\textbf{2.5} \pm \textbf{4.8}$	$2.92 \pm 1.3 imes 10^{-2}$	$2.96 \pm 5 imes 10^{-2}$
<i>p</i> ₃	2.04	1.78 ± 20.4	$2.05 \pm 5.69 imes 10^{-2}$	$2.06 \pm 2 imes 10^{-2}$
<i>p</i> ₄	27.44	27.3 ± 31.1	$26.7 \pm 5.69 imes 10^{-2}$	$27.89 \pm 10 imes 10^{-2}$
<i>p</i> 5	3.99	4.24 ± 26	$3.53 \pm 13.1 imes 10^{-2}$	$4.11 \pm 5.2 imes 10^{-2}$
$\hat{\theta} - \theta^{ref}$	0	$2.3 imes10^{-5}$	$8.2 imes 10^{-6}$	$4.5 imes10^{-6}$

Table: Estimated parameter values with UKS, IS and PMC with standard deviation.

< ロ > < 同 > < 回 > < 回 >

Population evolution and adaptativity in α -pinene

Figure: Adaptive ISR and reduction of weight degeneracy with D = 3 and T = 20: mixture coefficients α_d and entropy of the population weights

ODE solution after parameter estimation

Repressilator, [Elowitz, Nature 2000]

- mRNAs are observed, proteins are hidden
- mRNA and protein degradation rate constants are supposed to be known
- Estimate 9 parameters and initial conditions

Results for the Repressilator for N = 25 observations

• Parameter estimation

Parameter	True Parameter	UKS	FBE–IS	FBE–PMC
V ₁ ^{max}	150	147.3 ± 0.9	150.2 ± 0.09	150.0 ± 0.46
V2 ^{max}	80	81.9 ± 1.7	80.7 ± 0.49	80.2 ± 0.66
V ₃ ^{max}	100	102.2 ± 1.7	100.7 ± 0.25	100.1 ± 0.91
<i>k</i> ₁	50	53.0 ± 0.9	50.7 ± 0.05	50.1 ± 0.35
k ₂	30	$\textbf{37.1} \pm \textbf{0.94}$	30.9 ± 0.08	$\textbf{29.9} \pm \textbf{0.38}$
<i>k</i> 3	40	47.6 ± 0.8	40.72 ± 0.03	40.0 ± 0.36

Initial conditions for hidden variables

Parameter	True	UKS	FBE–IS	FBE–PMC
$p_1(0)$	1	97.8 ± 5.9	3.11 ± 0.21	2.86 ± 0.09
$p_2(0)$	2	143.6 ± 3.0	$\textbf{3.83}\pm\textbf{0.21}$	3.51 ± 0.10
$p_{3}(0)$	3	148.5 ± 8.6	4.76 ± 0.17	4.75 ± 0.27

Conclusion and perspective

- Introduction of the Flow for retrieving exact solution of the ODE (specific to deterministic hidden process driven by ODE)
- $\bullet\,$ First results $\rightarrow\,$ better estimate and better ODE equation at the end
 - Population Monte Carlo to approximate posterior probability
 - D-PMC of Douc et al. implemented and tested

Current and future work

- Study the impact of non recursive definition e.g. integration on all the time interval (and recursive version of a learning algorithm?)
- Impact of prior choice
- Other proposal densities and other rules for adaptive ISR: M-PMC (mixture of Gaussian distributions)
- Combine structure and parameter learning in a single PMC scheme

< ロ > < 同 > < 回 > < 回 >