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Quantitative Models of Biological Networks

System of Ordinary Differential Equations (ODE)

ẋ = f (t , x(t); θ)

x(t) : state variables at time t
protein concentrations
mRNA concentrations
metabolite concentrations

f : encodes the structure of the system
nonlinear function
Michaelis-Menten / Hill kinetics
Mass action kinetics
...

θ: parameter set (kinetic parameters, rate constants,...)
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Reverse Modeling of Biological Networks

Given

An ODE model (Initial Value Problem): x(0) = x0 and

ẋ(t) = f (t , x(t), θ)

A partially and noisy observation model:

y(t) = h(x(t)) + ε(t)

where h is a nonlinear observation function, ε(t) is a i.i.d noise

A sequence of observed data : y0:N−1 = {y0, ..., yN−1} at time
t0 = 0, t1, ..., tN−1

Goal

Estimation of parameters θ

Estimation of states x(t) (partially observed)

=⇒ Need for estimation of initial conditions (usually unknown / observed
with noise)
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Reminder: Initial Value Problem

Parametrized ODE:
ẋ(t) = f (t , x(t), θ) (1)

defined for t ∈ [0,T ] (T > 0), and f is a vector field indexed by a
parameter θ ∈ Θ ⊂ Rp.

Under general conditions on f (typically Lipschitz in x), there exists a
unique solution to (1) for a given initial value x(0) = x0 on the interval
[0,T ].

The solution for parameter θ and initial value x0 is denoted
φ : t 7→ φθ (t , x0).

φ : x0 7→ φθ (t , x0) is the flow of the ODE (action of the vector field in the
state space).
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Proposed approach

Search for reconstructed trajectories corresponding to a solution of the
ODE with given parameter estimates

In state-space model approach, the dependence on initial conditions is
forgotten: introduction of the Flow method

Monte Carlo approximation of the posterior distribution
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Augmented initial condition

Let’s define: {
ẋ(t) = f (t , x(t), θ(t))

θ̇(t) = 0
(2)

Augmented initial condition z0 = (x0, θ).

The solution is the function t 7→ φ (t , z0) from [0,T ] to Rp+d .

New setting: {
ż(t) = f (t , z(t))
z(0) = z0

(3)
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State-Space Model interpretation

Recursive definition of the state-space model

The dynamical system is observed at discrete-time points t0, ..., tN−1

zn+1 = Fn(zn)

yn = h(zn) + εn

with

Fn(zn) = φ(tn, z0) = zn +

∫ tn+1

tn
f(τ, z(τ); z0)dτ

A non recursive expression for the hidden states

zn = z0 +

∫ tn

0
f (z(τ), z0)dτ

= φ(tn, z0)

8/26 Brunel, d’Alché-Buc Flow-based Bayesian Estimation of Nonlinear Differential Equations



Introduction
A Population Monte Carlo approach

Numerical simulations on real problems
Conclusion

State-Space Model interpretation

Recursive definition of the state-space model

The dynamical system is observed at discrete-time points t0, ..., tN−1

zn+1 = Fn(zn)

yn = h(zn) + εn

with

Fn(zn) = φ(tn, z0) = zn +

∫ tn+1

tn
f(τ, z(τ); z0)dτ

A non recursive expression for the hidden states

zn = z0 +

∫ tn

0
f (z(τ), z0)dτ

= φ(tn, z0)

8/26 Brunel, d’Alché-Buc Flow-based Bayesian Estimation of Nonlinear Differential Equations



Introduction
A Population Monte Carlo approach

Numerical simulations on real problems
Conclusion

Bayesian estimation of the augmented initial condition 1

Collection of the observed time series (Imperfect observation of the
system):

y0, ..., yN−1

Choice of a prior distribution:

π−1(z0)

(more or less classical choice)

Focus on the Posterior Mean among possible Bayesian estimator (i.e.
Posterior Least Square Error Estimate):

ẑ0 =

∫
z0p(z0|y0:N−1)dz0

Approximation of πN−1 = p(z0|y0:N−1) (no closed-form) and of ẑ0.
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Bayesian estimation of the augmented initial condition 2

Homoscedasticity assumption: σ2 × Im ∈ Rm×m

Gaussian Noise =⇒ Gaussian Likelihood

L(y0:N−1; z0) ∝ σ−mN exp (−e(y0:N−1, z0)) (4)

with e(y0:N−1, z0) = 1
2σ2

∑N−1
i=0 ‖yi − h(φ(ti , z0))‖2.

Posterior distribution of the parameter z0:

p(z0|y0:N−1) ∝ exp (−e(y0:N−1, z0))π−1(z0) (5)
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Stochastic simulation or Monte Carlo methods

Monte Carlo = approximation of an expectation by the sample mean of a
function of simulated random variables.

Application in Bayesian Inference: approximate p(z0|y0:n−1) and
estimate E [z0|y0:n−1]
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Importance Sampling

Given a target density p and a proposal density q,

Estimate Ep[Z ] =
∫

z.p(z)dz =
∫

z. p(z)
q(z)

q(z)dz

Using (ξ1, . . . , ξM ), a iid sample from the distribution Q of density q{
Êp[Z ] = 1

M

∑M
i=1 wiξi

wi = p(ξi )
q(ξi )

(6)

Density p is known up to the normalizing constant: one uses
self-normalized weights w̃i = wi∑M

j=1 wj

Necessary condition of consistency: p has its support included in the
support of q

Limit theorems (Large numbers, Central Limit Theorem) guarantee
convergence of IS (and rate of convergence) when M −→∞
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Population Monte Carlo (PMC) and Iterative Importance Sampling
Resampling

Importance Sampling Resampling: Resample ξi , i = 1, . . . ,M with a
multinomialM(w̃i ) (with replacement)

Population Monte Carlo: Iterative construction of new samples
(populations) by "improving" the proposal distribution qt , t = 1, . . . ,T :
At each step t:

1 Generate (ξi,t )1≤i≤M ∼ qt (i.i.d sampling) and compute normalized weights
w̃i,t ,

2 Resample (ξ̃i,t )1≤i≤M by multinomial sampling with weights
w̃i,t , i = 1, . . . ,M

3 Construct qt+1 from ((ξ̃i,t′ , w̃i,t′ ))1≤i≤M,0≤t′≤t
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PMC and Adaptive Importance Sampling Resampling:

Proposal densities? D-kernel PMC (Douc et al., AOS, 2007) uses a
mixture of D transition kernels{

ξi,t = ξi,t−1 + εi,t

εi,t ∼
∑D

d=1 αd N(0,Σd,t )
(7)

Adaptivity ?
Possible sizes of jumps represented by different Σd
Adaptivity by augmenting the probability of components N(0,Σd,t ) which
ameliorate the likelihood
The idea is to make the proposal density closer to the target density
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D − kernel PMC: Learning algorithm

Minimization of Kullback-Leibler divergence w.r.t the objective function

EM-like algorithm used for the estimation of the mixture parameters
αd , d = 1, . . . ,D

At t = 0: generate (ξ̃i,0) by IS-Resampling and start with α0
d = 1/D.

For t = 1, . . . ,T
1 Generate index Ji,t ∈ [1, ..,D] with Ji,t ∼M(M, (αt

d ))
2 Generate independent moves ξi,t ∼ KJi,t (ξi,t−1, z)

3 Compute the normalized importance weights:

w̃i,t ∝
πN−1(ξi,t )∑

d α
t
d Kd (ξ̃i,t−1, ξi,t )

4 Resample (ξi,t ) into (ξ̃i,t ) by multinomial samplingM(M, w̃i,t )
5 Update mixture weights:

αt+1
d =

∑
i/Ji,t =d

w̃i,t
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Numerical simulations

Estimate parameters in a biochemical network (Isomerization of
α−pinene network)

Noninformative uniform prior on an interval centered in true parameters
N = 8,M = 5000,D = 7,T = 20
Only parameters pi ’s to be learnt (initial conditions are known)
σd = 10−11, . . . , 10−5

Estimate parameters in a regulatory network (Repressilator network)
N = 25 (simulated date), M = 1000,D = 7,T = 10

Comparison of several Monte Carlo (Bayesian) methods: Unscented
Kalman Smoothing, Flow-Based Estimate with Importance Sampling,
Flow-Based Estimate with PMC
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Isomerization of α−pinene network

Biochemical reactions

Isomerization of α−pinene (y1) to dipentene (y2) and allo-ocimen (y3)
which in turn yields α− and β − pyronene (y4) and a dimer (y5)
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Differential equations for α−pinene network

Linear model with 5 equations
ẋ1 = −(p1 + p2)x1

ẋ2 = p1x1

ẋ3 = p2x1 − (p3 + p4)x3 + p5x5

ẋ4 = p3x3

ẋ5 = p4x3 + p5x5

(8)

5 rate constants θ = (p1, . . . , p5) to be estimated,

Initial conditions are known.
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Parameter estimation

Results and comparisons on real dataset (Banga, 2006)

×10−5 Reference UKS FBE–IS FBE–PMC

p1 5.92 3.66 ± 5.6 5.98 ± 1.3 × 10−2 5.93 ± 4.7 × 10−2

p2 2.96 2.5 ± 4.8 2.92 ± 1.3 × 10−2 2.96 ± 5 × 10−2

p3 2.04 1.78 ± 20.4 2.05 ± 5.69 × 10−2 2.06 ± 2 × 10−2

p4 27.44 27.3 ± 31.1 26.7 ± 5.69 × 10−2 27.89 ± 10 × 10−2

p5 3.99 4.24 ± 26 3.53 ± 13.1 × 10−2 4.11 ± 5.2 × 10−2∥∥∥θ̂ − θref
∥∥∥ 0 2.3 × 10−5 8.2 × 10−6 4.5 × 10−6

Table: Estimated parameter values with UKS, IS and PMC with standard deviation.
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Population evolution and adaptativity in α−pinene
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Figure: Adaptive ISR and reduction of weight degeneracy with D = 3 and T = 20:
mixture coefficients αd and entropy of the population weights
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ODE solution after parameter estimation
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Repressilator, [Elowitz, Nature 2000]

dr1

dt
= vmax

1
kn

12

kn
12 + pn

2
− kmRNA

1 r1

dr2

dt
= vmax

2
kn

23

kn
23 + pn

3
− kmRNA

2 r2

dr3

dt
= vmax

3
kn

31

kn
31 + pn

1
− kmRNA

3 r3

dp1

dt
= k1r1 − kprotein

1 p1

dp2

dt
= k2r2 − kprotein

2 p2

dp3

dt
= k3r3 − kprotein

3 p3

mRNAs are observed, proteins are hidden

mRNA and protein degradation rate constants are supposed to be known

Estimate 9 parameters and initial conditions
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Results for the Repressilator for N = 25 observations

Parameter estimation

Parameter True Parameter UKS FBE–IS FBE–PMC
vmax

1 150 147.3± 0.9 150.2± 0.09 150.0± 0.46
vmax

2 80 81.9± 1.7 80.7± 0.49 80.2± 0.66
vmax

3 100 102.2± 1.7 100.7± 0.25 100.1± 0.91
k1 50 53.0± 0.9 50.7± 0.05 50.1± 0.35
k2 30 37.1± 0.94 30.9± 0.08 29.9± 0.38
k3 40 47.6± 0.8 40.72± 0.03 40.0± 0.36

Initial conditions for hidden variables

Parameter True UKS FBE–IS FBE–PMC
p1(0) 1 97.8± 5.9 3.11± 0.21 2.86± 0.09
p2(0) 2 143.6± 3.0 3.83± 0.21 3.51± 0.10
p3(0) 3 148.5± 8.6 4.76± 0.17 4.75± 0.27
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Conclusion and perspective

Introduction of the Flow for retrieving exact solution of the ODE (specific
to deterministic hidden process driven by ODE)
First results→ better estimate and better ODE equation at the end

Population Monte Carlo to approximate posterior probability
D-PMC of Douc et al. implemented and tested

Current and future work
Study the impact of non recursive definition e.g. integration on all the time
interval (and recursive version of a learning algorithm?)
Impact of prior choice
Other proposal densities and other rules for adaptive ISR: M-PMC (mixture
of Gaussian distributions)
Combine structure and parameter learning in a single PMC scheme
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