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Drug bioactivity classification

• Given molecule, predict active/not active

• State of the art method: SVM with graph kernels over the molecules
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Predicting activity against multiple targets

• There are numerous targets (different viruses, cancer types, ...) that
share characteristics

• Can we predict the activity better by learning against all available
targets at the same time?
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Multilabel classification

• Single label classification :

xi
predict−−−→ yi , yi ∈ {0, 1}

• Multilabel classification: Multiple labels (targets) associate with each
example.

xi
predict−−−→ yi = y1 × y2 × · · · × yk , yi ∈ {0, 1}

• Basic approach: Build a single-label classifier for each individual label,
compose the multilabels from their output

• Does not benefit from possible statistical dependencies between labels

• Structured output prediction: utilize structure (graph, tree, sequence)
of the output to predict the multilabel in a single shot

• Leverage on the correlation of neighboring labels
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NCI-cancer Dataset

• NCI-cancer dataset contains > 4000
molecules with anti-cancer activity
against ∼60 cancer celllines (cancer
types).

• Histogram shows the distribution of
molecules according to the activity.

• Each bar contains molecules active
against given number of targets

• Skewed multilabel distribution

• Heatmap shows the similarity between
pair of activity groups.

• Inactive molecules are mutually similar
• So are molecules that are active against

all targets
• And the extremes are similar to each

other
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Output representation: embedding of a labeled network

• No pre-existing structure between the
drug targets, but lots of microarray data
on the cell lines them selves:
Reverse-phase lysate, cDNA, Affymetric
HU6800, miRNA, ABC transporter
Radiation RNA array

• Each gives a correlation matrix between
the cell lines (how similarly the cell lines
respond)

• Extract network from the correlation
matrix: Maximum weighted spanning
tree, Correlation thresholding, ...

• Multilabel y induces a labeling of the
network

• Embed the (labelled) network to a feature
space: ψe,u(y) = 1 iff edge e is labeled u
in y
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Input representation: Kernels over molecular graphs

• Various kernels applicable for molecular
graphs, and have previously been used in
single-label molecular classification tasks

• Walk kernels (top picture): count
matching walks (e.g.
C-O-C-C-C-O-C-C-C) in two molecular
graphs

• Weighted decomposition kernel
(middle): matches neighbourhoods of
same-labeled nodes in two molecular
graphs

• Tanimoto kernel (bottom): kernel over
user-defined salient substructures
(molecular fingerprints)

• Tanimoto works the best
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Method: Max-margin Conditional Random Field (MMCRF)

• Relative of M3N (Taskar et al.) and HM3 (Rousu et al.) but for fixed
general graphs.

• Based on Conditional Random Field model over a network of outputs:

P(y|x) =
1

Z(x ,w)

∏
e∈E

exp(wT
e ϕe(x , ye)),

• Joint feature map contains products of all input (molecule graph) and
output feature (edge-labeling) pairs via the tensor (outer) product:

ϕ(x , y) = φ(x)⊗ ψ(y)

• Lets us learn context (edge-labeling) specific feature weights
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Learning MMCRF: overview

The MMCRF framework consists of the
following components

• Max-margin learning: Maximize the
margin between real example ϕ(xi , yi )
and all the incorrect pseudo-examples
ϕ(xi , y), whilst controlling the norm of
the weight vector

• Use of kernels K(x , x ′) to tackle
high-dimensionality of input feature maps

• Use of graphical model techniques for
tackle the exponential size of the
multilabel space

• Marginal dual representation to obtain
polynomial size (dual) variable set

• Probabilistic inference (loopy belief
propagation) over the marginal dual
polytope to give fast updates during
optimization
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Data preprocessing

• Three versions of the dataset prepared
• Full data.
• With no zero active molecules (group 0

removed.
• With middle-active molecules (groups

0-10 and 50-59 removed)

• 5-fold stratified cross-validation used:
• divide each activity group into 5-folds
• merge across groups to create global

folds
• ensures that each group is represented

in each fold
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Prediction Accuracy/F1

• The scatter plot shows
prediction accuracy (left) and
F1 (right) of MMCRF
(y-axis) against SVM
(x-axis).

• Three versions of the
NCI-cancer dataset shown
from top to bottom: Full,
No-zero-actives,
Middle-actives

• In terms of F1 (right-hand
side plots), MMCRF always
better than SVM

• In terms of accuracy
(left-hand-side plots),
MMCRF and SVM equally
good on the full data,
MMCRF better if
zero-actives are removed
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Conclusions

• We proposed a structured output prediction approach for the
classification of drug-like molecules.

• It is, to our knowledge, the first multilabel classification approach for
the problem.

• The method is able to utilize the the statistical dependencies between
multiple labels by means of a network constructed from auxiliary data
available for the targets.

• In our experiments, the MMCRF outperforms the state-of-the-art SVM

• Future work includes
• studying the effect of the output structure to predictive accuracy

(learning algorithms, tree vs. general graph, other graph-theoretic
properties)

• deeper look at cell line and drug molecule properties that explain
good/bad performance
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