THE COMPLEXITY AND APPLICATION OF SYNTACTIC PATTERN RECOGNITION USING FINITE INDUCTIVE STRINGS

Elijah Myers Paul S. Fisher Keith Irwin Jinsuk Baek Joao Setubal

FINITE INDUCTIVE STRINGS

- A finite inductive string is one that:
 - Consists of symbols selected from a finite alphabet of possible symbols
 - Eventually terminates and is therefore finite in length
 - Can be characterized using inductive reasoning (i.e. observations of the specific occurrences of symbols can be applied generally to define the entire string)

FACTORING

• Given a sample string: aacacgacgt

- Append the start symbol: Saacacgacgt
- Create a storage structure (ruling) that uniquely identifies each symbol

Ruling		
$S \rightarrow a$	$cac \rightarrow g$	
$Sa \rightarrow a$	$cacg \rightarrow a$	
$aa \rightarrow c$	$ga \rightarrow c$	
$aac \rightarrow a$	$gac \rightarrow g$	
$ca \rightarrow c$	$gacg \rightarrow t$	

3

FACTORING

• Given the residual string: agagt

- Append the start symbol: Sagagt
- Create a second ruling that uniquely identifies each symbol

Level () Ruling	Level 1	Ruling
$S \rightarrow a$	$ca \rightarrow c$	$S \rightarrow a$	$ag \rightarrow a$
$Sa \rightarrow a$	$ga \rightarrow c$	$a \rightarrow g$	$gag \rightarrow t$
$aa \rightarrow c$			

FACTORING

• Given the residual string: t

- Append the start symbol: St
- Create a third ruling that uniquely identifies each symbol

Level 0	Ruling	Level 1	Ruling
$S \rightarrow a$	$ca \rightarrow c$	$S \rightarrow a$	$ag \rightarrow a$
$Sa \rightarrow a$	$ga \rightarrow c$	$a \rightarrow g$	
$aa \rightarrow c$		Level 2	Ruling
		$S \to t$	

FOLLOWING

• Given a sample string: aacacgaccat

- Append the start symbol: Saacacgaccat
- Apply the first ruling to identify those elements that do not conform to the ruling

Level 0 Ruling		
$S \rightarrow a$	$ca \rightarrow c$	
$Sa \rightarrow a$	$ga \rightarrow c$	
$aa \rightarrow c$		

FOLLOWING

• Given the residual string: agacat

- Append the start symbol: Sagacat
- Apply the second ruling to identify those elements that do not conform to the ruling

Level 1	Ruling
$S \rightarrow a$	$ag \rightarrow a$
$a \rightarrow g$	

FOLLOWING

• Given the residual string: cat

- Append the start symbol: Scat
- Apply the third ruling to identify those elements that do not conform to the ruling

 $\begin{array}{c|c} Level \ 2 \ Ruling \\ S \rightarrow t \end{array}$

• With all rulings applied, the final residual "cat" is the portion of the string that did not match the pattern of the factored string

PERFORMANCE

• Definition of Terms

- *b* number of symbols in the alphabet (i.e. base)
- IB inductive base
- N length of the examined string (number of characters)
- L number of levels factored or followed
- R number of rules in a given ruling level

PERFORMANCE

• Factoring

- $O(b + L[b^{IB} + (IB 1)(b^{IB}) + 3N])$
- $O(b + L[IBb^{IB} + 3N])$
- O(L + LN)

PERFORMANCE

• Following

- $O(b + L[R + 2b^{IB} + N])$
- $O(b + L[3b^{IB} + N])$
- O(L + LN)

FACTORING RESULTS

12

FOLLOWING RESULTS

 $\mathbf{13}$

SUMMARY

- Factoring provides a means to discover the underlying patterns in a string of genetic data
- Following provides a means to compare any unknown string to one that has been factored previously to determine convergence/divergence
- Both processes have been determined to perform in linear time with respect to the length of the input strings