

Time series gene expression data classification via L1-norm temporal SVM

Carlotta Orsenigo, Carlo Vercellis

Dep. of Management, Economics and Industrial Engineering Politecnico di Milano

Outline of the talk

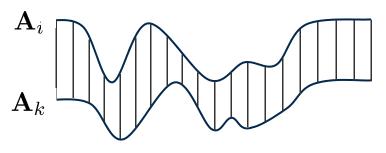
- Time series classification
- Dynamic time warping
- L1-norm support vector machines
- L1-norm temporal support vector machines
- Computational results

Time series classification

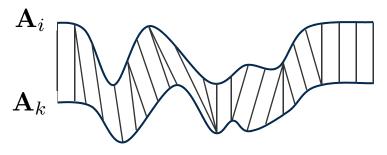
- Main motivation: growing number of experiments aimed at collecting and analyzing time series gene expression data
- Two examples:
 - categorization of genes based on their temporal evolution in the cell cycle
 - prediction of the clinical response to a drug
- Time series classification is a supervised learning problem aimed at labeling temporally structured univariate or multivariate sequences
- Several approaches have been proposed, based on
 - a two-stage procedure (most common paradigm)
 - the notion of time warping distance

Dynamic time warping

- Time warping distance is an effective measure of similarity between pairs of time series
- It has proven to be more robust and versatile than the Euclidean distance:
 - it copes with sequences of variable length
 - performs shifts in the sequences to identify similar profiles with different phases
- The warping distance is usually evaluated by a dynamic optimization algorithm



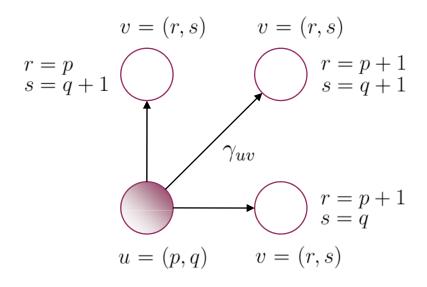
Euclidean distance



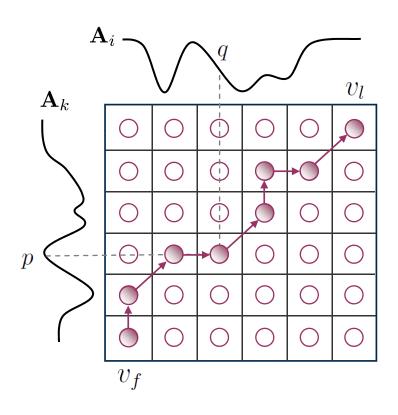
Warping distance

Dynamic time warping

ullet The warping distance between ${f A}_i$ and ${f A}_k$ is defined as the length of the shortest warping path in a directed graph



Length of (u, v): $\gamma_{uv} = (a_{i1r} - a_{k1s})^2$



L2-norm and L1-norm SVM

ullet Let the input dataset be represented by a $\,m imes n\,$ matrix in which row ${f x}_i\in\Re^n$ represents time series A_i

L2-norm SVM

$$\min \quad \frac{1}{2} \|\mathbf{w}\|_2 + C \sum_{i=1}^m \xi_i$$

s.t.
$$y_i (\mathbf{w}' \mathbf{x}_i - b) \ge 1 - \xi_i$$
 $i \in \mathcal{M}$ $\xi_i \ge 0 \ \forall i; \ \mathbf{w}, b \text{ free}$

L1-norm SVM

$$\min \quad \|\mathbf{w}\|_1 + C \sum_{i=1}^m \xi_i$$

s. t.
$$y_i (\mathbf{w}' \mathbf{x}_i - b) \ge 1 - \xi_i \quad i \in \mathcal{M}$$
 s. t. $y_i (\mathbf{w}' \mathbf{x}_i - b) \ge 1 - \xi_i \quad i \in \mathcal{M}$ $\xi_i \ge 0 \ \forall i; \quad \mathbf{w}, b \text{ free}$ $\xi_i \ge 0 \ \forall i; \quad \mathbf{w}, b \text{ free}$

We introduce the binary variables $p_i = \begin{cases} 0 & \text{if } \mathbf{w}'\mathbf{x}_i - b \geq 1 \\ 1 & \text{otherwise} \end{cases}$

L1-norm temporal SVM

ullet The following mixed-integer optimization problem can be formulated, where d_{ik} is the warping distance between ${f A}_i$ and ${f A}_k$:

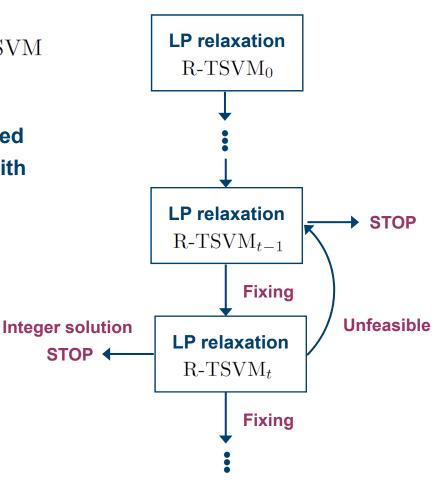
min
$$\sum_{j=1}^{n} u_j + C \sum_{i=1}^{m} \xi_i + \delta \sum_{i=1}^{m} \sum_{k=i+1}^{m} d_{ik} r_{ik}$$
 (L₁-TSVM)

s. t.
$$y_i (\mathbf{w}' \mathbf{x}_i - b) \ge 1 - \xi_i \quad i \in \mathcal{M}$$

 $-u_j \le w_j \le u_j \quad j \in \mathcal{N}$
 $\frac{1}{S} \xi_i \le p_i \le S \xi_i \quad i \in \mathcal{M}$
 $-r_{ik} \le y_i (2p_i - 1) + y_k (2p_k - 1) \le r_{ik} \quad i, k \in \mathcal{M}, i < k$
 $u_j, \xi_i, r_{ik} \ge 0 \ \forall i, j, k; \quad p_i \in \{0, 1\} \ \forall i; \quad \mathbf{w}, b \text{ free}$

Solving L1-norm temporal SVM

- A feasible suboptimal solution to model L_1 -TSVM can be obtained by an approximate procedure, in which:
 - **the relaxation** R-TSVM $_0$ of L_1 -TSVM is considered
 - each problem $R\text{-}TSVM_t$ is obtained by fixing to 0 the binary variable with the smallest fractional value in the optimal solution of $R\text{-}TSVM_{t-1}$



Computational experiments

• Two microarray time series gene expression datasets were considered:

Summary of gene expression time series datasets

	v O	1			
	Dataset				
Summary	Yeast	MS - $rIFN\beta$			
Examples	388	52			
Classes	Early G1 (67),	Good responder (33),			
	Late G1 (136), S (77)	Poor responder (19)			
	G2 (54), M (54)				
Time series lengt	h 17	[5,7]			

Five methods:

- L_1 -SVM
- SVM_{RBF}
- \blacksquare SVM_{DTW}
- \blacksquare k-NN_{Eucl}
- $\blacksquare k-NN_{DTW}$

• Accuracy evaluation:

- five times 4-fold cross-validation
- on each training set3-fold cross-validationfor parameters tuning

Parameters values tested Method Parameters values

Method	Parameters values			
k-NN _{Eucl}	k = 2, 4, 6, 8, 10			
k-NN _{DTW}				
$\mathrm{SVM}_{\mathrm{RBF}}$	$C = 10^j, j \in [-1, 3]$			
$\mathrm{SVM}_{\mathrm{DTW}}$	$\sigma = 10^j, j \in [-4, 2]$			
L_1 -SVM	$C = 10^j, j \in [-1, 3]$			
L_1 -TSVM	$\delta = 10^j, j \in [-1, 1]$			

Computational experiments

Classification accuracy (%) on the gene expression datasets

	Method					
Dataset	k-NN _{Eucl}	k-NN _{DTW}	SVM_{RBF}	$\mathrm{SVM}_{\mathrm{DTW}}$	L_1 -SVM	L_1 -TSVM
Yeast	68.5	51.8	73.3	73.7	72.4	73.9
MS - $rIFN\beta$						
$t \in [0,1]$	83.8	76.9	82.7	84.2	76.9	80.8
$t \in [0,2]$	81.9	78.9	82.7	84.6	80.0	85.4
$t \in [0,3]$	82.7	75.0	81.9	75.4	78.5	83.8
$t \in [0,4]$	76.9	73.1	76.9	71.2	79.2	80.0
$t \in [0,5]$	75.8	69.2	71.5	78.5	79.6	80.8
$t \in [0,6]$	71.2	66.9	68.5	70.8	76.5	78.8

Empirical remarks:

- L_1 -TSVM vs L_1 -SVM \Rightarrow increase in accuracy in [0.8%, 5.4%]
- on MS-rIFNeta dataset the use of the warping distance appears promising (milder decrease in accuracy for L_1 -TSVM)
- lacktriangledown on Yeast dataset $L_1 ext{-} ext{TSVM}$ and $ext{SVM}_{ ext{DTW}}$ provided comparable results

Conclusions and future works

- A new supervised learning method for time series gene expression classification has been proposed
- It relies on a mixed-integer optimization formulation which aims at improving the discrimination capability in time series classification problems
- Experiments performed on two datasets showed the effectiveness of the proposed method and the usefulness of the warping distance
- Future extensions:
 - test the novel technique on a wider range of time series datasets
 - investigate other time series similarity measures
 - study alternative heuristic procedures

- Baranzini, S., Mousavi, P., Rio, J., Caillier, S., Stillman, A., Villoslada, P., Wyatt, M., Comabella, M., Greller, L.,
 Somogyi, R., Montalban, X., Oksenberg, J.: Transcription-based prediction of response to IFNβ using supervised computational methods. PLoS Biology 3, 166-176 (2005)
- Cho, R.J., Campbell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., Gabrielian, A.E.,
 Landsman, D., Lockhart, D.J., Davis, R.W.: A genome-wide transcriptional analysis of the mitotic cell cycle.
 Molecular Cell 2, 65-73 (1998)
- Cuturi, M., Vert, J.P., Birkenes, O., Matsui, T.: A kernel for time series based on global alignments. In: Proc. of ICASSP, pp. 413-416 (2007)
- Kadous, M.W., Sammut, C.: Classification of multivariate time series and structured data using constructive induction. Machine Learning 58, 179-216 (2005)
- Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowledge and Information Systems 7, 358-386 (2004)
- Mangasarian, O.L.: Exact 1-norm support vector machines via unconstrained convex differentiable minimization.
 Journal of Machine Learning Research 7, 1517-1530 (2006)
- Orsenigo, C., Vercellis, C.: Combining discrete SVM and fixed cardinality warping distances for multivariate time series classification. Pattern Recognition 43, 3787-3794 (2010)
- Vapnik, V.: The nature of statistical learning theory. Springer Verlag, New York, USA (1995)