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¢ Time series classification

¢ Dynamic time warping

¢ L1-norm support vector machines

¢ L1-norm temporal support vector machines

¢ Computational results
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Time series classification :mold
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¢ Main motivation: growing number of experiments aimed at collecting and
analyzing time series gene expression data

¢ Two examples:

® categorization of genes based on their temporal evolution
in the cell cycle

® prediction of the clinical response to a drug

e Time series classification is a supervised learning problem aimed at labeling
temporally structured univariate or multivariate sequences

¢ Several approaches have been proposed, based on

® a two-stage procedure (most common paradigm)

® the notion of time warping distance
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¢ Time warping distance is an effective measure of similarity between pairs
of time series
¢ It has proven to be more robust and versatile than the Euclidean distance:

® it copes with sequences of variable length

® performs shifts in the sequences to identify similar profiles with
different phases

¢ The warping distance is usually evaluated by a dynamic optimization algorithm
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¢ The warping distance between A, and A, is defined as the length of the
shortest warping path in a directed graph
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‘ L2-norm and L1-norm SVM EmOId

¢ Let the input dataset be represented by a m x n matrix in which row x; € "
represents time series A

L2-norm SVM L1-norm SVM
1 m m
min §||W||2 + C’Z& min  ||wl|; + OZ&
i—=1 i=1

st oy(wx,—b)>1-& ieM st y(wx,—b)>1-& ieM

& >0Vi; w,b free & >0Vi; w,b free

0 if wx; —b>1

e We introduce the binary variables p; = { 1 otherwise
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‘ L1-norm temporal SVM ; mOId

¢ The following mixed-integer optimization problem can be formulated, where
d,; is the warping distance between A, and A, :

g

min Z uj +C Z & +0 Z > diktik (L1-TSVM)
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‘ Solving L1-norm temporal SVM ﬁmOId
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¢ A feasible suboptimal solution to model L;-TSVM can be obtained by an
approximate procedure, in which:

® the relaxation R-TSVM, of L;-TSVM LP relaxation
. . R-TSVMj
is considered l
® each problem R-TSVM; is obtained g
by fixing to 0 the binary variable with l
the smallest fractional value in the )
] ] | LP relaxation STOP
optimal solution of R-TSVM;_; R-TSVM,_, '
Fixing
Integer solution Lp = ] Unfeasible
STOP relaxation
R-TSVM;

l Fixing
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¢ Two microarray time series gene expression datasets were considered:

Summary of gene expression time series datasets

Dataset
Summary Yeast MS-rIFNj3
Examples 388 52
Classes Early G1 (67), Good responder (33),
Late G1 (136), S (77) Poor responder (19)
G2 (54), M (54)
Time series length 17 [5,7]
. . Parameters values tested
¢ Five methods: e Accuracy evaluation:
Method Parameters values
L Ll'S\H\[ m five times 4-fold E-NNguel k=24.6,810
® SVMgpr cross-validation k-NNprtw
N / _ 7 .
® SVMprw ® on each training set SVMrer C=10 ; 3_6 [~1,3]
¥ k-NNguo 3-fold cross-validation SVMprw o =105 €[-4,2]
' : Li-SVM C=107,5€[-1.3
% k-NNprw for parameters tuning [ ]

Li-TSVM 6 =107,5 € [-1,1]
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‘ Computational experiments ;mOId

Classification accuracy (%) on the gene expression datasets

Method
Dataset k-NNpuer E-NNptw SVMrer SVMprw L1-SVM L1-TSVM

Yeast 68.5 51.8 73.3 i g 72.4 73.9

MS-rIFNB
t€0,1]  83.8 76.9 82.7 84.2 76.9 80.8
t€0,2]  81.9 78.9 82.7 84.6 80.0 85.4
tc0,3] 827 75.0 81.9 75.4 78.5 83.8
t€0.4]  76.9 73.1 76.9 71.2 79.2 80.0
t€0,5] 758 69.2 1.5 78.5 79.6 80.8
t€0,6] 712 66.9 68.5 70.8 76.5 78.8

i

& Empirical remarks:
® L;-TSVM vs [{-SVM = increase in accuracy in [0.8%, 5.4%]

m on MS-rIFN3 dataset the use of the warping distance appears promising
(milder decrease in accuracy for L.;-TSVM )

® on Yeast dataset L{-TSVM and SVMp1w provided comparable results
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Conclusions and future works ?mOId
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¢ A new supervised learning method for time series gene expression classification
has been proposed

¢ It relies on a mixed-integer optimization formulation which aims at improving
the discrimination capability in time series classification problems

e Experiments performed on two datasets showed th
nro t
pro t
e Future extensions:
® test the novel technique on a wider range of time series datasets
® investigate other time series similarity measures

® study alternative heuristic procedures
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