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Supervised Classification Paradigm
—
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Building Training with Random Learning

1 Each sample is an observation of that sample’s class

1 With random sampling or learning (R
samples are better (more complete ¢

1 Problem: Training samples are difficu
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Building Training with Random Learning

Labeled
Training Data

A 4

Classification

Cancer Region Classification Result

High accuracy requires training that is:
Accurate — Correctly labeled
Representative — Contains class information

Discriminative — Captures class differences

Doyle, et al. “Hierarchical Boosted Bayesian Ensemble for Prostate Cancer Detection from Digitized Histopathology", Biomedical Engineering, IEEE Transactions on. (In Press)



Building Training with Random Learning

11 Expert medical knowledge is required

1 Large images (1-2 GB): tedious, time-consuming to
obtain detailed contours

o Each training image requires a great deal of effort



Active Learning (AL) Overview

S =
11 Active Learning (AL):
o Selectively choose only informative samples for training

o “Informative”: samples that are likely to increase
classifier performance

Informative Points Actively Sampled Expert Supervised
Training Points Annotations Classifier

- Uninformative Points



Active Learning (AL) Overview
—

1 How do we find “informative” annotation samples?

1 Concept of “sample ambiguity”

5 o

Schohn and Cohn, “Less is More: Active Learning with Support Vector Machines.” Proc. of the 17 Int. Conf. on Machine Learning, 2000, pp. 839-846.
Constantinopoulos, C. and Likas, A. “Semi-supervised and active learning with the probabilistic RBF classifier” Neurocomputing, Vol 71(13-15), pp. 2489-2498 (2006)



Active Learning (AL) Overview

The more ambiguous a sample is, the more likely it
is informative (should be selected for annotation)

6 b

5 o

Schohn and Cohn, “Less is More: Active Learning with Support Vector Machines.” Proc. of the 17 Int. Conf. on Machine Learning, 2000, pp. 839-846.
Constantinopoulos, C. and Likas, A. “Semi-supervised and active learning with the probabilistic RBF classifier” Neurocomputing, Vol 71(13-15), pp. 2489-2498 (2006)



Overview

Extending Active Learning
Ambiguity as a measure of sample usefulness

Consensus of Ambiguity: Combining AL methods



Measuring Sample Ambiguity

o
1 Schohn (2000), Constantinopoulos (2006): SVMs

Distance to the decision hyperplane

Schohn and Cohn, “Less is More: Active Learning with Support Vector Machines.” Proc. of the 17 Int. Conf. on Machine Learning, 2000, pp. 839-846.
Constantinopoulos, C. and Likas, A. “Semi-supervised and active learning with the probabilistic RBF classifier” Neurocomputing, Vol 71(13-15), pp. 2489-2498 (2006)



Measuring Sample Ambiguity

S 1 —
11 Bayes’ Likelihood:

o Based on likelihood of class membership
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Measuring Sample Ambiguity

Seung (1992), Freund (1997): Query-by-Committee

Based on disagreement among weak bagged

classifiers
Weak Classifiers Average
Classification

TOTAL
Cy|Cs5| Cg| Cr| Cs|Cy|Cho (0-1)

0 0 0 0 0 0 0 [2/M=0.2

0 0 1 0 0 0 0 [3/M=0.3

0 0 0 1 0 0 0 [2/IM=0.2

1 1 0 0 1 0 0 |5/M=05

Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: 5th Annual ACM Workshop on Computational Learning Theory, pp. 287-294. (1992)
Freund, Y., et al. “Selective Sampling Using the Query by Committee Algorithm” Machine Learning, 28, 133—-168 (1997)



Combining AL Methods

1 AL methods use one
description of ambiguity
each

1 Ensemble methods combine
multiple algorithms:

o1 Variance is exploited to yield
optimal results

1 Consensus classification:
sample classification

o1 Consensus Active Learning:
sample ambiguity

1 Consensus of Ambiguity

(CoA)




Advantage of CoA vs. AL

RL: All samples to be
annotated
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Advantage of CoA vs. AL

-1 RL: All samples to be
annotated

1 AL: Subset of samples

eligible for annotation




Advantage of CoA vs. AL
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Advantage of CoA vs. AL

RL: All samples to be
annotated

AL: Subset of samples
eligible for annotation

CoA: FEWER eligible
samples for annotation
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1 Theory of CoA
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CoA Theory: Specific Properties

CoA Properties:
Multiple AL algorithms reduce ambiguous samples

Additional algorithms increase benefit of CoA
Necessary Components:
General definition of ambiguous sample

Consensus among multiple algorithms (consensus ratio)

|dentifying “strongly” ambiguous samples



CoA Theory: Basic Notation

Dataset X

Sample I; € X
Label Yi S {UJl, wa, - - 7wC}

Supervised

Classifier C(CC@) c {UJ1, wao, - - ,wc}

Stl" Training Set (Labeled)

Goal of the training algorithm: Build S™ from unlabeled
samples contained inX

Samples chosen according to a Training Function: (I)(sz)

which measures sample ambiguousness.



CoA Theory: Sample Ambiguity
—

o Definition 1. A sample ; € X is considered
ambiguous if a < ®(x;) < b where a, b are lower
and upper bounds for ®(x;), respectively.

Output of Training Function (I)(xz)

¥ l
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Highly Confident  Intermediate Confidence  Highly Confident
Eligible Samples: SE




CoA Theory: Multiple Algorithms

CoA employs multiple training algorithms:
O.je{l,2,- M}

Each algorithm returns a corresponding set of
ambiguous (i.e. eligible-to-annotate) samples:

E oF E
SE SE ... 5k



CoA Theory: Consensus Ratio

Definition 2. Given nonempty sets of ambiguous
samples, S;,j€{1,2,---,M} , consensus ratio is
defined as R=U/V where U=|n, 5’ and
V=luil, S7| |
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CoA Theory: Consensus Ratio
=

-1 Definition 2. Given nonempty sets of ambiguous
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CoA Theory: Consensus Ratio
N

71 Definition 2. Given nonempty sets of ambiguous
samples, S;,j€{1,2,---,M} , consensus ratio is
defined as R=U/V where U=|n1, S’ and
V=luil, S7| |




CoA Theory: Consensus Ratio
=

-1 Definition 2. Given nonempty sets of ambiguous
samples, S;,j€{1,2,---,M} , consensus ratio is
defined as R=U/V where U=|n’, 5’ and
V=|ul, s

U

If they overlap completely, thenU =V and R = 1.



CoA Theory: Consensus Ratio
=

-1 Definition 2. Given nonempty sets of ambiguous
samples, S;,j€{1,2,---,M} , consensus ratio is
defined as R=U/V where U=|n’, 5’ and
V= ‘ Ué\il Sﬂ

If they are independent, then U = 0, and R = 0.

Low ratios: greater benefit from the consensus scheme
High ratios: algorithms perform the same, so less benefit



CoA Theory: Consensus Ratio
=

Consensus among three different AL algorithms

0.25

0.27

o
.
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o
-

Consensus Ratio

0.057

0 20 40 60 80 100
Iteration of Active Learning

Plateau at 0.2: relatively little consensus
Motivates the use of ensemble approach




CoA Theory: Strong Ambiguity

Definition 3. A sample = € X will be considered
strongly ambiguous if x€ S* =LY that is, if the
sample is designated as ambiguous by @;, for all
algorithms j € {1,2,--- , M}.
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CoA Theory: Strong Ambiguity
—

-1 Definition 3. A sample z: € X will be considered
strongly ambiguous if x€ S* =LY that is, if the
sample is designated as ambiguous by @;, for all
algorithms j € {1,2,--- , M}.




CoA Theory: Strong Ambiguity

-1 Definition 3. A sample z: € X will be considered

strongly ambiguous if x€ S* =LY that is, if the

sample is designated as ambiguous by @;, for all
algorithms j € {1,2,--- , M}.

L




CoA Theory: Strong Ambiguity

Definition 3. A sample = € X will be considered
strongly ambiguous if x€ S* =LY that is, if the
sample is designated as ambiguous by @;, for all
algorithms j € {1,2,--- , M}.

L] L] L]



CoA Theory: Addition of Algorithms

Proposition. As the number of algorithms being
combined M increases, the consensus ratio R will
either remain the same or will decrease.

Analogy to a sieve: as you add more layers of
filtering, fewer samples will “get through”.

Remember: Small consensus ratio means better
motivation for using consensus algorithm
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Evaluating the Training Set

Training set evaluation: Probabilistic Boosting Tree

Two medical image analysis databases:
Prostate cancer detection from histopathology
Breast cancer grading from histopathology

Three training algorithms:
Query-By-Committee (QBCQC)

Bayes Likelihood (BAY)
Support Vector Machine Distance (SVM)



Experiment 1: Prostate Dataset

Experiment 1 — Prostate Histopathology
30 x 30 pixel grid on prostate biopsy samples

14 texture features extracted from each ROI

12, 000 ROiIs classified
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Experiment 1: Prostate Dataset
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Experiment 1: Eligible Sample Size

« 104 Average Eligible Sample Set Size

2

—
(3)

Size of Eligible Sample Set
o
o1 -

QBC AL BAY AL SVMAL CoAAL



Experiment 2: Breast Grading

S
11 Experiment 2 — Breast Histopathology Grading
1 9,000 ROIs of homogeneous tissue (500 x 500 pixels)
o1 Graph-based features to describe nuclear arrangement
Original Image

Delaunay Graph Voronoi Graph

Low-Grade

High-Grade




Experiment 2: Breast Grading
N
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Experiment 2: Breast Grading

Average Eligible Sample Set Size

Size of Eligible Sample Set

QBC AL BAY AL SVMAL CoAAL
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1 Concluding Remarks



Concluding Remarks

CoA: Using multiple AL algorithms reduces set of
informative samples, making annotation easier

Additional methods increase CoA benefit if the
consensus ratio decreases (but is still >0)

Generalizable to any supervised classification
problem where:

Data are costly, difficult to annotate

Target class is complex, RL requires many samples

Multiple AL algorithms can be leveraged simultaneously
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