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Supervised Classification Paradigm
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Building Training with Random Learning

 Each sample is an observation of that sample’s class

 With random sampling or learning (RL): more 

samples are better (more complete class model)

 Problem: Training samples are difficult to obtain!



Building Training with Random Learning
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 High accuracy requires training that is:

 Accurate – Correctly labeled

 Representative – Contains class information

 Discriminative – Captures class differences

Doyle, et al. “Hierarchical Boosted Bayesian Ensemble for Prostate Cancer Detection from Digitized Histopathology", Biomedical Engineering, IEEE Transactions on. (In Press)



Building Training with Random Learning

 Expert medical knowledge is required

 Large images (1-2 GB): tedious, time-consuming to 

obtain detailed contours

 Each training image requires a great deal of effort



Active Learning (AL) Overview

 Active Learning (AL):

 Selectively choose only informative samples for training 

 “Informative”: samples that are likely to increase 

classifier performance
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Active Learning (AL) Overview

 How do we find “informative” annotation samples?

 Concept of “sample ambiguity”

Constantinopoulos, C. and Likas, A. “Semi-supervised and active learning with the probabilistic RBF classifier” Neurocomputing, Vol 71(13-15),  pp. 2489-2498 (2006)
Schohn and Cohn, “Less is More: Active Learning with Support Vector Machines.” Proc. of the 17th Int. Conf. on Machine Learning, 2000, pp. 839-846.



Active Learning (AL) Overview

 The more ambiguous a sample is, the more likely it 

is informative (should be selected for annotation)

Constantinopoulos, C. and Likas, A. “Semi-supervised and active learning with the probabilistic RBF classifier” Neurocomputing, Vol 71(13-15),  pp. 2489-2498 (2006)
Schohn and Cohn, “Less is More: Active Learning with Support Vector Machines.” Proc. of the 17th Int. Conf. on Machine Learning, 2000, pp. 839-846.
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Measuring Sample Ambiguity

 Schohn (2000), Constantinopoulos (2006): SVMs

 Distance to the decision hyperplane

Schohn and Cohn, “Less is More: Active Learning with Support Vector Machines.” Proc. of the 17th Int. Conf. on Machine Learning, 2000, pp. 839-846.

Constantinopoulos, C. and Likas, A. “Semi-supervised and active learning with the probabilistic RBF classifier” Neurocomputing, Vol 71(13-15),  pp. 2489-2498 (2006)



Measuring Sample Ambiguity

 Bayes’ Likelihood: 

 Based on likelihood of class membership
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Measuring Sample Ambiguity

 Seung (1992), Freund (1997): Query-by-Committee

 Based on disagreement among weak bagged 

classifiers

TOTAL

(0-1)

1 0 1 0 0 0 0 0 0 0 2/M = 0.2

0 1 1 0 0 1 0 0 0 0 3/M = 0.3

0 1 0 0 0 0 1 0 0 0 2/M = 0.2

1 0 1 1 1 0 0 1 0 0 5/M = 0.5

Weak Classifiers Average 

Classification

Freund, Y., et al. “Selective Sampling Using the Query by Committee Algorithm” Machine Learning, 28, 133–168 (1997)

Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: 5th Annual ACM Workshop on Computational Learning Theory, pp. 287–294.  (1992)



Combining AL Methods

 AL methods use one 
description of ambiguity 
each

 Ensemble methods combine 
multiple algorithms:

 Variance is exploited to yield 
optimal results

 Consensus classification: 
sample classification

 Consensus Active Learning: 
sample ambiguity

 Consensus of Ambiguity 
(CoA)



Advantage of CoA vs. AL
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CoA Theory: Specific Properties

 CoA Properties: 

Multiple AL algorithms reduce ambiguous samples

 Additional algorithms increase benefit of CoA

 Necessary Components:

General definition of ambiguous sample

 Consensus among multiple algorithms (consensus ratio)

 Identifying “strongly” ambiguous samples



CoA Theory: Basic Notation
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CoA Theory: Sample Ambiguity

 Definition 1. A sample             is considered 

ambiguous if                      where a, b are lower 

and upper bounds for         , respectively.

Highly ConfidentHighly Confident Intermediate Confidence

Eligible Samples:

0.90.80.70.60.50.40.30.20.1 1.0

Output of Training Function



CoA Theory: Multiple Algorithms

 CoA employs multiple training algorithms:

 Each algorithm returns a corresponding set of 

ambiguous (i.e. eligible-to-annotate) samples:



 Definition 2. Given nonempty sets of ambiguous 

samples,                            , consensus ratio is 

defined as               where                    and  
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CoA Theory: Consensus Ratio

 Definition 2. Given nonempty sets of ambiguous 
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.

If they overlap completely, then U = V and R = 1.



 Definition 2. Given nonempty sets of ambiguous 
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.

CoA Theory: Consensus Ratio

If they are independent, then U = 0, and R = 0.

Low ratios: greater benefit from the consensus scheme

High ratios: algorithms perform the same, so less benefit



CoA Theory: Consensus Ratio

Consensus among three different AL algorithms

Plateau at 0.2: relatively little consensus

Motivates the use of ensemble approach
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CoA Theory: Strong Ambiguity

 Definition 3. A sample           will be considered 

strongly ambiguous if                       ; that is, if the 

sample is designated as ambiguous by     , for all 

algorithms                       .



CoA Theory: Addition of Algorithms

 Proposition. As the number of algorithms being 

combined      increases, the consensus ratio       will 

either remain the same or will decrease.

 Analogy to a sieve: as you add more layers of 

filtering, fewer samples will “get through”. 

 Remember: Small consensus ratio means better 

motivation for using consensus algorithm
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Evaluating the Training Set

 Training set evaluation: Probabilistic Boosting Tree

 Two medical image analysis databases:

 Prostate cancer detection from histopathology

 Breast cancer grading from histopathology

 Three training algorithms:

Query-By-Committee (QBC)

 Bayes Likelihood (BAY)

 Support Vector Machine Distance (SVM)



Experiment 1: Prostate Dataset

 Experiment 1 – Prostate Histopathology

 30 x 30 pixel grid on prostate biopsy samples

 14 texture features extracted from each ROI

 12, 000 ROIs classified



Experiment 1: Prostate Dataset



Experiment 1: Eligible Sample Size



Experiment 2: Breast Grading

 Experiment 2 – Breast Histopathology Grading

 9,000 ROIs of homogeneous tissue (500 x 500 pixels)

Graph-based features to describe nuclear arrangement

Low-Grade

Delaunay Graph Voronoi Graph

High-Grade

Original Image



Experiment 2: Breast Grading



Experiment 2: Breast Grading
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Concluding Remarks

 CoA: Using multiple AL algorithms reduces set of 

informative samples, making annotation easier

 Additional methods increase CoA benefit if the 

consensus ratio decreases (but is still >0)

 Generalizable to any supervised classification 

problem where:

 Data are costly, difficult to annotate

 Target class is complex, RL requires many samples

Multiple AL algorithms can be leveraged simultaneously
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