Mining Billion-node Graphs: Patterns, Generators and Tools

Christos Faloutsos
CMU
(on sabbatical at google)

Thank you!

- José Balcázar,
- Francesco Bonchi
- Aristides (Aris) Gionis
- Michèle Sebag
- Ricard Gavaldà

Our goal:

Open source system for mining huge graphs:

PEGASUS project (PEta GrAph mining System)

- www.cs.cmu.edu/~pegasus

- code and papers

Outline

- Introduction - Motivation
- Problem\#1: Patterns in graphs
- Problem\#2: Tools
- Problem\#3: Scalability
- Conclusions

Graphs - why should we care?

Food Web
[Martinez '91]

Protein Interactions [genomebiology.com]

Graphs - why should we care?

- IR: bi-partite graphs (doc-terms)

D_{N}

- web: hyper-text graph
- ... and more:

Graphs - why should we care?

- network of companies \& board-of-directors members
- 'viral' marketing
- web-log ('blog') news propagation
- computer network security: email/IP traffic and anomaly detection

Outline

- Introduction - Motivation
\Rightarrow - Problem\#1: Patterns in graphs
- Static graphs
- Weighted graphs
- Time evolving graphs
- Problem\#2: Tools
- Problem\#3: Scalability
- Conclusions

Problem \#1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal'/'abnormal'?
- which patterns/laws hold?

Problem \#1 - network and graph mining

- How does the Internet look like?
- How does FaceBook look like?
- What is 'normal'/'abnormal'?
- which patterns/laws hold?
- To spot anomalies (rarities), we have to discover patterns

Problem \#1 - network and graph mining

- How does the Internet look like?
- How does FaceBook look like?
- What is 'normal'/'abnormal'?
- which patterns/laws hold?
- To spot anomalies (rarities), we have to discover patterns
- Large datasets reveal patterns/anomalies that may be invisible otherwise...

Graph mining

- Are real graphs random?

Laws and patterns

- Are real graphs random?
- A: NO!!
- Diameter
- in- and out- degree distributions
- other (surprising) patterns
- So, let's look at the data

Solution\# S. 1

- Power law in the degree distribution [SIGCOMM99]

internet domains

Solution\# S. 1

- Power law in the degree distribution [SIGCOMM99]

internet domains

Solution\# S.2: Eigen Exponent E

Eigenvalue

Exponent $=$ slope

$$
E=-0.48
$$

May 2001

Rank of decreasing eigenvalue

- A2: power law in the eigenvalues of the adjacency matrix

Solution\# S.2: Eigen Exponent E

Eigenvalue

Exponent $=$ slope

$$
E=-0.48
$$

May 2001

Rank of decreasing eigenvalue

- [Mihail, Papadimitriou '02]: slope is $1 / 2$ of rank exponent

But:

How about graphs from other domains?

More power laws:

- web hit counts [w/ A. Montgomery]

0
sites
C. Faloutsos (CMU)

epinions.com

And numerous more

- \# of sexual contacts
- Income [Pareto] -'80-20 distribution'
- Duration of downloads [Bestavros+]
- Duration of UNIX jobs ('mice and elephants')
- Size of files of a user
- 'Black swans'

Outline

- Introduction - Motivation
- Problem\#1: Patterns in graphs
- Static graphs
- degree, diameter, eigen,
- triangles
- cliques
- Weighted graphs
- Time evolving graphs
- Problem\#2: Tools

Solution\# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles

Solution\# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles
- Friends of friends are friends
- Any patterns?

Triangle Law: \#S. 3 [Tsourakakis ICDM 2008]

X-axis: \# of participating triangles
Y: count (\sim pdf)

Triangle Law: \#S. 3 [Tsourakakis ICDM 2008]

X-axis: \# of participating triangles
Y: count (\sim pdf)

Triangle Law: \#S. 4 [Tsourakakis ICDM 2008]

Triangle Law: Computations [Tsourakakis ICDM 2008]

But: triangles are expensive to compute (3-way join; several approx. algos)
Q: Can we do that quickly?

Triangle Law: Computations [Tsourakakis ICDM 2008]

But: triangles are expensive to compute (3-way join; several approx. algos)
Q: Can we do that quickly?
A: Yes!
\#triangles $=\mathbf{1 / 6 ~ S u m ~}\left(\lambda_{i}{ }^{3}\right)$
(and, because of skewness (S2),
we only need the top few eigenvalues!

Triangle Law: Computations [Tsourakakis ICDM 2008]

Wikipedia graph 2006-Nov-04
$\approx 3, \mathrm{IM}$ nodes $\approx 37 \mathrm{M}$ edges

$1000 x+$ speed-up, $>90 \%$ accuracy

EigenSpokes

B. Aditya Prakash, Mukund Seshadri, Ashwin Sridharan, Sridhar Machiraju and Christos Faloutsos: EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs, PAKDD 2010, Hyderabad, India, 21-24 June 2010.

EigenSpokes

- Eigenvectors of adjacency matrix
- equivalent to singular vectors (symmetric, undirected graph)

$$
A=U \Sigma U^{T}
$$

EigenSpokes

- Eigenvectors of adjacency matrix
- equivalent to singular vectors (symmetric, undirected graph)

EigenSpokes

- Eigenvectors of adjacency matrix
- equivalent to singular vectors (symmetric, undirected graph)

EigenSpokes

- Eigenvectors of adjacency matrix
- equivalent to singular vectors (symmetric, undirected graph)

EigenSpokes

- EE plot: $2^{\text {nd }}$ Principal component
- Scatter plot of u2 scores of u1 vs u2
- One would expect
- Many points @ origin
- A few scattered
~randomly

u1
$1^{\text {st }}$ Principal component

EigenSpokes

- EE plot:
- Scatter plot of scores of u1 vs u2
- One would expect
- Many points @ origin

u1

EigenSpokes - pervasiveness

- Present in mobile social graph
- across time and space
- Patent citation graph

$$
\begin{aligned}
& \text { 02 } \\
& \rightarrow 2 \\
& \text { \# }
\end{aligned}
$$

EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected

EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected

EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected

EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected

So what?

- Extract nodes with high scores
- high connectivity
- Good "communities"

ECML/PKDD'10
C. Faloutsos (CMU)
spy plot of top 20 nodes

42

Bipartite Communities!

patents from same inventor(s)
cut-and-paste bibliography! magnified bipartite community

Outline

- Introduction - Motivation
- Problem\#1: Patterns in graphs
- Static graphs
- degree, diameter, eigen,
- triangles
- cliques
- Weighted graphs
- Time evolving graphs
- Problem\#2: Tools

Observations on weighted graphs?

- A: yes - even more 'laws'!

M. McGlohon, L. Akoglu, and C. Faloutsos Weighted Graphs and Disconnected Components: Patterns and a Generator. SIG-KDD 2008

Observation W.1: Fortification

Q: How do the weights of nodes relate to degree?

Observation W.1: Fortification

More donors, more \$?

Observation W.1: fortification: Snapshot Power Law

- Weight: super-linear on in-degree
- exponent 'iw': $1.01<\mathrm{iw}<1.26$

More donors, even more \$

ECML/PKDD'10 (\$)

In-weights

Orgs-Candidates

e.g. John Kerry, \$10M received, from 1K donors

Outline

- Introduction - Motivation
- Problem\#1: Patterns in graphs
- Static graphs
- Weighted graphs
- Time evolving graphs
- Problem\#2: Tools

Problem: Time evolution

- with Jure Leskovec (CMU -> Stanford)

- and Jon Kleinberg (Cornell sabb. @ CMU)

T. 1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
- diameter ~ $\mathrm{O}(\log \mathrm{N})$
- diameter $\sim \mathrm{O}(\log \log \mathrm{N})$

- What is happening in real data?

T. 1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
- diameter ~ ((hr I)
- diameter ~ O (rorog N)

- What is happening in real data?
- Diameter shrinks over time

T. 1 Diameter - "Patents"

- Patent citation network
- 25 years of data
- @ 1999
- 2.9 M nodes
- 16.5 M edges

T. 2 Temporal Evolution of the Graphs

- $\mathrm{N}(\mathrm{t})$... nodes at time t
- $\mathrm{E}(\mathrm{t}) \ldots$ edges at time t
- Suppose that

$$
\mathrm{N}(\mathrm{t}+1)=2 * \mathrm{~N}(\mathrm{t})
$$

- Q : what is your guess for
$\mathrm{E}(\mathrm{t}+1)=? 2 * \mathrm{E}(\mathrm{t})$
T. 2 Temporal Evolution of the Graphs
- $\mathrm{N}(\mathrm{t})$... nodes at time t
- $\mathrm{E}(\mathrm{t}) \ldots$ edges at time t
- Suppose that

$$
\mathrm{N}(\mathrm{t}+1)=2 * \mathrm{~N}(\mathrm{t})
$$

- Q : what is your guess for

$$
\mathrm{E}(\mathrm{t}+1)=(2) * \mathrm{E}(\mathrm{t})
$$

- A: over-doubled!
- But obeying the "'Densification Power Law"

T. 2 Densification - Patent Citations

- Citations among patents granted
- @ 1999
- 2.9 M nodes
- 16.5 M edges
- Each year is a datapoint

Outline

- Introduction - Motivation
- Problem\#1: Patterns in graphs
- Static graphs
- Weighted graphs
- Time evolving graphs
- Problem\#2: Tools

More on Time-evolving graphs

M. McGlohon, L. Akoglu, and C. Faloutsos Weighted Graphs and Disconnected Components: Patterns and a Generator. SIG-KDD 2008

Observation T.3: NLCC behavior

Q: How do NLCC's emerge and join with the GCC?
(${ }^{\prime}$ NLCC' ${ }^{\prime}=$ non-largest conn. components)

- Do they continue to grow in size?
- or do they shrink?
- or stabilize?

Observation T.3: NLCC behavior

Q: How do NLCC's emerge and join with the GCC?
(${ }^{\prime}$ NLCC' ${ }^{\prime}=$ non-largest conn. components)

- Do they continue to grow in size?
- or do they shrink?
- or stabilize?

Observation T.3: NLCC behavior

- After the gelling point, the GCC takes off, but NLCC's remain \sim constant (actually, oscillate).

Time-stamp
C. Faloutsos (CMU)

Timing for Blogs

- with Mary McGlohon (CMU->google)
- Jure Leskovec (CMU->Stanford)
- Natalie Glance (now at Google)
- Mat Hurst (now at MSR)
[SDM'07]

T. 4 : popularity over time

\# in links

Post popularity drops-off - exponentially?

$$
@ t+l a g
$$

T. 4 : popularity over time

\# in links (log)

days after post (log)

Post popularity drops-off - expor ent ally? POWER LAW!

Exponent?

T. 4 : popularity over time

\# in links (log)

days after post (log)

Post popularity drops-off - expor ent ally?

POWER LAW!

Exponent? -1.6

- close to -1.5: Barabasi's stack model
- and like the zero-crossings of a random walk
C. Faloutsos (CMU)

-1.5 slope

J. G. Oliveira \& A.-L. Barabási Human Dynamics: The Correspondence Patterns of Darwin and Einstein. Nature 437, 1251 (2005) . [PDF]

Figure 1 |The correspondence patterns of Darwin and Einstein. 66

T.5: duration of phonecalls

Surprising Patterns for the Call Duration Distribution of Mobile Phone Users

Pedro O. S. Vaz de Melo, Leman
Akoglu, Christos Faloutsos, Antonio A. F. Loureiro

PKDD 2010

Probably, power law (?)

No Power Law!

'TLaC: Lazy Contractor'

- The longer a task (phonecall) has taken,
- The even longer it will take

Data Description

- Data from a private mobile operator of a large city
- 4 months of data
- 3.1 million users
- more than 1 billion phone records

Outline

- Introduction - Motivation
- Problem\#1: Patterns in graphs
\Rightarrow • Problem\#2: Tools
- CenterPiece Subgraphs
- OddBall (anomaly detection)
- PEGASUS
- Problem\#3: Scalability
- Conclusions

CenterPiece Subgraphs

- Hanghang TONG et al, KDD’06

Center-Piece Subgraph Discovery
 [Tong+ KDD 06]

Input

Q: Who is the most central node wrt the black nodes?
(e.g., master-mind criminal, common advisor/collaborator, etc)

Original Graph

Center-Piece Subgraph Discovery [Tong+ KDD 06]

Input: original graph

Output: CePS

Q: How to find hub for the query nodes? A: Combine proximity scores (RWR)

DBLP co-authorship network:
-400,000 authors, 2,000,000 edges
Code at: http://www.cs.cmu.edu/~htong/soft.htm

CePS: Example (AND Query)

Outline

- Introduction - Motivation
- Problem\#1: Patterns in graphs
- Problem\#2: Tools
- CenterPiece Subgraphs
- OddBall (anomaly detection)
- Problem\#3: Scalability - PEGASUS
- Conclusions

OddBall: Spotting AnOmalies

in Weighted Graphs

Faloutsos
Carnegie Mellon University
School of Computer Science

PAKDD 2010, Hyderabad, India

Main idea

For each node,

- extract 'ego-net' (=1-step-away neighbors)
- Extract features (\#edges, total weight, etc etc)
- Compare with the rest of the population

What is an egonet?

Selected Features

- N_{i} : number of neighbors (degree) of ego i
- E_{i} : number of edges in egonet i
- W_{i} : total weight of egonet i
- $\lambda_{w, i}$: principal eigenvalue of the weighted adjacency matrix of egonet I

Near-Clique/Star

Near-Clique/Star

Outline

- Introduction - Motivation
- Problem\#1: Patterns in graphs
- Problem\#2: Tools
- CenterPiece Subgraphs
- OddBall (anomaly detection)

Problem\#3: Scalability -PEGASUS

- Conclusions

Scalability

- Google: > 450,000 processors in clusters of ~2000 processors each [Barroso, Dean, Hölzle, "Web Search for a Planet: The Google Cluster Architecture" IEEE Micro 2003]
- Yahoo: 5Pb of data [Fayyad, KDD'07]
- Problem: machine failures, on a daily basis
- How to parallelize data mining tasks, then?
- A: map/reduce - hadoop (open-source clone) http://hadoop.apache.org/

Outline - Algorithms \& results

\Rightarrow| | Centralized | Hadoop/PEG
 ASUS |
| :--- | :---: | :---: |
| Degree Distr. | old | old |
| Pagerank | old | old |
| Diameter/ANF | old | HERE |
| Conn. Comp | old | HERE |
| Triangles | done | |
| Visualization | started | |

HADI for diameter estimation

- Radius Plots for Mining Tera-byte Scale Graphs U Kang, Charalampos Tsourakakis, Ana Paula Appel, Christos Faloutsos, Jure Leskovec, SDM'10
- Naively: diameter needs $\mathbf{O}\left(\mathbf{N}^{* * 2}\right.$) space and up to $\mathrm{O}\left(\mathrm{N}^{* *} 3\right)$ time - prohibitive ($\mathrm{N} \sim 1 \mathrm{~B}$)
- Our HADI: linear on E (~10B)
- Near-linear scalability wrt \# machines
- Several optimizations -> 5x faster

10^{9}

Count ${ }^{10^{8}}$

Radius

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- Largest publicly available graph ever studied.

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- Largest publicly available graph ever studied.

10^{8}	
${ }^{\circ}$	14 (di
${ }_{4} 10$	
$\stackrel{\text { ¢ }}{ } 10^{4}$	~7 (undir.)

19+? [Barabasi+]
10^{1}
10^{0}

0	5	10	15	20	25	30

Radius
Radius
YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- 7 degrees of separation (!)
-Diameter: shrunk

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores .

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores .

Radius Plot of GCC of YahooWeb.

Running time - Kronecker and Erdos-Renyi Graphs with billions edges.

Outline - Algorithms \& results

	Centralized	Hadoop/PEG ASUS
Degree Distr.	old	old
Pagerank	old	old
Diameter/ANF	old	HERE
Conn. Comp	old	HERE
Triangles		done
Visualization	started	

Generalized Iterated Matrix Vector Multiplication (GIMV)

PEGASUS: A Peta-Scale Graph Mining

 System - Implementation and Observations. U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. (ICDM) 2009, Miami, Florida, USA. Best Application Paper (runner-up).
Ceneralized Iterated Matri details Vector Multiplication (GIMV)

- PageRank
- proximity (RWR)
- Diameter
- Connected components
- (eigenvectors,
- Belief Prop.
- ...)

Matrix - vector Multiplication
(iterated)

Example: GIM-V At Work

- Connected Components

Example: GIM-V At Work

- Connected Components

Example: GIM-V At Work

- Connected Components

Example: GIM-V At Work

- Connected Components

Size

Example: GIM-V At Work

- Connected Components

GIM-V At Work

- Connected Components over Time
- LinkedIn: 7.5M nodes and 58M edges

Stable tail slope after the gelling point

Outline

- Introduction - Motivation
- Problem\#1: Patterns in graphs
- Problem\#2: Tools
- Problem\#3: Scalability
\Rightarrow - Conclusions

OVERALL CONCLUSIONS low level:

- Several new patterns (fortification, triangle-laws, conn. components, etc)
- New tools:
- CenterPiece Subgraphs, anomaly detection (OddBall)
- Scalability: PEGASUS / hadoop

OVERALL CONCLUSIONS high level

- Large datasets reveal patterns/outliers that are invisible otherwise
- Terrific opportunities

- Large datasets, easily(*) available PLUS
$-s / w$ and h / w developments

References

- Leman Akoglu, Christos Faloutsos: RTG: A Recursive Realistic Graph Generator Using Random Typing. ECML/PKDD (1) 2009: 13-28
- Deepayan Chakrabarti, Christos Faloutsos: Graph mining: Laws, generators, and algorithms. ACM Comput. Surv. 38(1): (2006)

References

- Deepayan Chakrabarti, Yang Wang, Chenxi Wang, Jure Leskovec, Christos Faloutsos: Epidemic thresholds in real networks. ACM Trans. Inf. Syst. Secur. 10(4): (2008)
- Deepayan Chakrabarti, Jure Leskovec, Christos Faloutsos, Samuel Madden, Carlos Guestrin, Michalis Faloutsos: Information Survival Threshold in Sensor and P2P Networks. INFOCOM 2007: 1316-1324

References

- Christos Faloutsos, Tamara G. Kolda, Jimeng Sun: Mining large graphs and streams using matrix and tensor tools. Tutorial, SIGMOD Conference 2007: 1174

References

- T. G. Kolda and J. Sun. Scalable Tensor Decompositions for Multi-aspect Data Mining. In: ICDM 2008, pp. 363-372, December 2008.

References

- Jure Leskovec, Jon Kleinberg and Christos Faloutsos Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, KDD 2005 (Best Research paper award).
- Jure Leskovec, Deepayan Chakrabarti, Jon M. Kleinberg, Christos Faloutsos: Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication. PKDD 2005: 133-145

References

- Jimeng Sun, Yinglian Xie, Hui Zhang, Christos Faloutsos. Less is More: Compact Matrix Decomposition for Large Sparse Graphs, SDM, Minneapolis, Minnesota, Apr 2007.
- Jimeng Sun, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos, GraphScope: Parameterfree Mining of Large Time-evolving Graphs ACM SIGKDD Conference, San Jose, CA, August 2007

References

- Jimeng Sun, Dacheng Tao, Christos Faloutsos: Beyond streams and graphs: dynamic tensor analysis. KDD 2006: 374383

References

- Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan, Fast Random Walk with Restart and Its Applications, ICDM 2006, Hong Kong.
- Hanghang Tong, Christos Faloutsos, Center-Piece Subgraphs: Problem Definition and Fast Solutions, KDD 2006, Philadelphia, PA

References

- Hanghang Tong, Christos Faloutsos, Brian Gallagher, Tina Eliassi-Rad: Fast best-effort pattern matching in large attributed graphs. KDD 2007: 737-746

Project info

www.cs.cmu.edu/~pegasus
Google: pegasus cmu

Akoglu, Leman

Kang, U

McGlohon, Mary

Tong, Hanghang

Prakash, Aditya

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

