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Flexible intelligence in complex domains
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Our problem

How to build the ‘central’ computational mechanisms for
* closed-loop control of a system with
* sensors and actuators that has
* long-term goal-directed interactions with
* acomplex

* imperfectly predictable
external environment

What is the role of learning?
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Interaction with an external environment

// o > “

action \\

Leslie Pack Kaelbling, ECML/PKDD-2010



What to learn? What to build in?

observation
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Critical areas neglected in following discussion:
perception, actuation, language, human
interaction, multi-agent systems, ...
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Structures we could learn

Policy

Value function v

Transition model

AN
<

Observation
model ‘/

<

Leslie Pack Kaelbling, ECML/PKDD-2010



Structures we could Iearn
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Let’s try to make transition and
observation models
easy to apply and easy to learn
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Internal architecture
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Internal architecture
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Feedback control

Loop:
e select an action based on (estimated) world state
* see what effect it has in the world

HeRo'’s SeLr-Levenng BowL

ca. 30 B.C.
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All models are wrong; but some are useful. - Box

plan, then
execute
high open-loop
working
too hard
model
fidelity
feedback
bad control with
performance ‘\ weak model
low
none frequent

feedback
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Plans versus policies

Number of states in an interesting environment:
* maybe continuous
* maybe 10”4 predicates applied to
* one or more objects drawn from
* 10”5 objects (books, shoes, cans of tomatoes)
* or 10”8 objects (pieces of pasta, pages of books)

Number of states true right now: 1



Using simplified models for action selection
ICAPS 2004: First probabilistic planning competition

Entries: Many sophisticated MDP planning algorithms

Winner: FF-Replan
* determinimized model + classical forward planner

* replan on unexpected outcomes

Result: New definition of probabilistically interesting problems
* can't be solved effectively by FF-Replan



Action selection with partial observability

observation

state
estimation

belief
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Plan in belief space:

* every action gains information and changes the world

» changes are reflected in new belief via estimation

* goalisto believe that the environmentis in a desired state



Using simplified models for action selection

Three examples:

Continuous control with state-dependent observation noise:
* deterministic dynamics
* most likely observation



State-dependent observation noise

* robotinx, yspace
* good position sensing in light regions; poor in dark

starting mean belief
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Joint work with Rob Platt, Russ Tedrake and Tomas Lozano-Pérez




Control in belief space: underactuated

State space:

Planning

objective:

Underactuated
dynamics:

Acrobot

-

Gaussian belief:




Belief space dynamics

Dynamics specify next belief state, as a function of previous
belief state and action

* state update: generalized Kalman filter

(Met1,Ze+1) = GKF(oy, at, pe, 2¢)

* substitute expected observation in for actual one
add Gaussian noise

(e, Ze41) = Flag, e, Z¢) + N
= GKF(o(pt), at, te, 2¢) + N

* continuous Gaussian non-linear dynamics:
apply tools from control theory



Planning by local optimization

1. Parameterize initial
trajectory by "via”
points

2. Shift “via” points while
enforcing dynamic
constraints

3. Stop when local
minimum is reached




Light-dark plan
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Replanning

Replan when new belief state deviates too far from planned
trajectory




Replanning: light-dark problem

actual trajectory
of mean

'1:'\
actual location
| | | | | |
1 0 1 2 3 4 5



Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem




Replanning: light-dark problem

actual trajectory




Laser-grasp domain




Laser-grasp: reality

Initially planned path

Actual path
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Using simplified models for action selection

Three examples in partially observable domains

Continuous control with state-dependent observation noise:
* deterministic dynamics

* most likely observation

Robot grasping with tactile sensing:
* shortened horizon
* reduced action space

Household robot with local sensing:
* assume subtask serializability
* assume desired observations

Leslie Pack Kaelbling, ECML/PKDD-2010



Goal: pick up object of known shape with specific grasp

Visual localization and detection works moderately well...

Joint work with Kaijen Hsiao and Tomas Lozano-Pérez Leslie Pack Kaelbling, ECML/PKDD-2010




Powerdrill: 20 / 10 successful grasps




Using simplified models for action selection

Household robot with local sensing:
* assume subtask serializability
* assume desired observations



Classes of robotics problems in which:

* Problems are huge:
* long horizon
* many continuous dimensions
* combinatoric discrete aspects
* No terrible outcomes

Geometry is not intricate

Partial observability:
local but fairly reliable

Joint work with Tomas Lozano-Pérez




Symbols to Angles

Initial state known in geometric
detail

e

Goal set is abstract, symbolic

tidy(house) A charged(robot)

Operator descriptions:
» STRIPS-like, with continuous values
* procedures suggest values for existential vars
* geometric reasoning

Leslie Pack Kaelbling, ECML/PKDD-2010



Hierarchy crucial for large problems

Subtrees represent serialized subtasks

Leslie Pack Kaelbling, ECML/PKDD-2010



Planning in the now

* maintain left expansion
of plan tree

* each level uses a higher-
fidelity model: with more

preconditions elaborated

* keep track of weakest
preconditions for each
operation in each plan

* recursively planto
achieve those
preconditions

* execute primitives

* replan if preconditions of
a plan step are ever

violated
Leslie Pack Kaelbling, ECML/PKDD-2010



Wash a block and put it away

storage

washer
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Plan 1

in(a, storage)

clean(a)

N

A0:Wash(a)

1
1
|

v
Plan 2
clean(a)

o

AO:Place(a, washer) Al:Wash(a)

| |

I I

\J
Plan 3

in(a, washer)

VAR

Al:Pick(a, aStart) Al:Place(a, washer)

1 1
1 1
1 1
| |

v v
Plan 4 Plan 7
Holding() = a in(a, washer)

l

A2:Place(a, washer)

—

AO:clearX(swept_a, (a)) A2:Pick(a, aStart)

1 1
1
1
1

v
Plan 5
Holding() = None
in(a, aStart)
clearX(swept_a, (a))

1

I I

I I

I I

l l

v
Placeln(washer)

v
PickUp(a, aStart)

AO:Place(a, storage)

1
1

v
Plan 8
clean(a)
in(a, storage)

!

A1:Pick(a, ax)

I
1

v
Plan 9
clean(a)
Holding() = a

!

A2:Pick(a, aX)

1
1
1
1

v
PickUp(a, aX)

)/

A2:Pick(d, dStart)

AO:remove(b, swept_a) AO:remove(c, swept_a) A2:Place(a, aX)
| |
\ |
Plan 6 I
clearX(swept_a, (a, c, b, d)) v
overlaps(d, swept_a) = False Placeln(ax)

Holding() = None
in(a, aStart)
overlaps(b, swept_a) = False

A

A2:Pick(c, cStart) A2:Place(c, ps29385:) A2:Pick(b, bStart) A2:Place(b, ps28541:)

1 1 1 1
1 1 1 1

v v v v
PickUp(c, cStart) Placeln(ps29385:) PickUp(b, bStart) Placeln(ps28541:)

PickUp(d, dStart)

12 planning problems
13 primitive steps
Flat: 1 problem,

11 primitive steps

o~

Al:Place(a, storage)

1
1

v
Plan 10
clean(a)
in(a, storage)

i

AO:clearX(swept_aX, (a)) A2:Place(a, storage)

1 1
1 1

v 1
Plan 11 v
clean(a)
Holding() = a Placeln(storage)

clearX(swept_aX, (a))

l

AO:remove(d, swept_aX)

1
1

v

Plan 12

clean(a)
clearX(swept_aX, (a, c, b, d))
overlaps(c, swept_aX) = False
overlaps(b, swept_aX) = False

Holding() = a

overlaps(d, swept_aX) = False

N

A2:Place(d, ps51040:) A2:Pick(a, aX)

1 1

1
I I I
I I I
l l l
v
PickUp(a, aX)

v
Placeln(ps51040:)
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Wash a block and put it away
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Planning in the Know

Plan in the now in belief space:
* Plan can depend on obtaining particular observations

* Construct single plan that will succeed with high
probability

* Replan on unexpected observations

Plan at the "knowledge level”
* Traditional to plan in the powerset of the state space
* We have potentially infinite state space

* Use explicit logical representation of knowledge and lack
of knowledge



Knowledge fluents

Fluent: b=V

Loc(vacuum) = livingRoom

Knowing the value: K. (¢ =v)=Pr(dp=v)>1—¢

K(Loc(vacuum) = livingRoom)

Knowingavalue: KV_.(¢)=TFv.K (P =V)

KV (Loc(vacuum))



Operators in knowledge space

Standard operator descriptions automatically extended:
* require preconditions to be known
 add knowledge effects

Grasp
pre :in(robot,R) =T Ain(O,R) =T

post :holding(O) =T

Grasp
pre : K(in(robot,R) =T) AK(in(O,R) =T)

post :holding(O) = T A K(holding(O) =T)



Observation probabilities

Given an operator with knowledge effect,
result can be any desired value, with cost: —log Pr(¢$ = v)

Look
pre : K(in(robot,R) =T)

post : KV(in(O, R))
Co

Look
pre : K(in(robot,R) =T)

post : K(in(O,R) =T)
C =—logPr(in(O,R) =T) + Cy



Going on a tiger hunt

move(Room):
post: robotLoc = Room

listen:
pre: robotLoc = hall

post: KV(tigerLoc)

shoot:
pre: robotLoc = tigerLoc
post: deadTiger

P(tigerLoc = leftRoom) = 0.8




Going on a tiger hunt: regression search tree

move(Room):

post: robotLoc = Room

listen:
pre: robotLoc = hall
post: KV(tigerLoc)
shoot:

cost=3.231

cost=0
TigerDead() = True

‘% Shoot| ]\QO:Shoot[ ]

cost=17.094

pre: robotLoc = tigerLoc
post: deadTiger

P(tigerLoc = leftRoom) = 0.8

RobotLoc() = leftRoom
TigerLoc() = leftRoom
KV(TigerLoc()) = True

}0 :MoveTolleftRoom]| \

cost=4.231
TigerLoc() = leftRoom
KV(TigerLoc()) = True
RobotLoc() = hallway

AO:MoveTo[hallway] }0:MoveTo[hallway]

RobotLoc() = rightRoom
TigerLoc()\= rightRoom
KV(TigerLac()) = True

cost=25.231
TigerLoc() = leftRoom
KV(TigerLoc()) = True
RobotLoc() = leftRoom

cost=25.231
TigerLoc() = leftRoom
KV(TigerLoc()) = True
RobotLoc() = rightRoom

cost s
1—10*log P

cost=5.231
RobotLoc() = hallway



Monitor execution and replan

 Listen, expecting to hear tiger on the left
* Heartigeronright

* Replan
Plan 2
AO:Listen() AO: MoveTo(IeftRoom) AO: Shoot() AO: MoveTo(rlghtRoom) AO: Shoot()
|
| | |
\ \ \

ListenPrim MoveTo(rightRoom) ShootPrim



Cleaning house

Goal: vacuum four of the rooms in the house
* have to put away junk items before vacuuming
* location of junk is unknown
* |ocation of vacuum is unknown

Plans are made assuming likely belief; replan as necessary

Leslie Pack Kaelbling, ECML/PKDD-2010
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Plan hierarchy can pose small filtering problems

B(loc(Joe), loc(friend(Joe)) | Ogp.+)

B(loc(Joe), hidingPlaces(Room1), locked(Closet) | Og.¢)

B(loc(key(Closet)) | Op.¢)

Leslie Pack Kaelbling, ECML/PKDD-2010



Learning models

» modellearning
v
r World model _l
observation
g state belief action
— . . > | . -
estimation selection action

E

* Factoring, lifting are crucial
* Fidelity doesn’t have to be perfect
 Ultimately, partially observable

Leslie Pack Kaelbling, ECML/PKDD-2010



Blocks with physics

.

Joint work with Hanna Pasula and Luke Zettlemoyer Leslie Pack Kaelbling, ECML/PKDD-2010




Representing a world model

Representation should:
* allow effective generalization
* be useful for planning
* be efficiently learnable

High fidelity model: detailed physical dynamics equations

Low fidelity model: probabilistic state transition dynamics over
discretized state space

Pr(st | St—1, Cl)



Probabilistic dynamic rules

Combine logic and probability to model effects of actions in
complex, uncertain domains

pickup(X): {Y: on(X,Y)}
clear(X), inhand-nil, size(X)>2, size(X)<7 =
0.803 :-on(X,Y)
0.093 : no change

Leslie Pack Kaelbling, ECML/PKDD-2010



IsXonY?

Useful symbolic vocabulary should be learned

Leslie Pack Kaelbling, ECML/PKDD-2010



Neoclassical learning =

Given experience, {(st, Qt, St+1)} Y\¢
. . A
Find rule set that optimizes é}f},

score(R) = ) logPr(s¢yq | s¢, a,R) — «lR|
t

Start with one default rule: “stuff happens”
* Symbolic: add, delete rule; change rule conditions
* Greedy: choose set of outcomes

* Convex optimization: find maximum likelihood
probabilities

Leslie Pack Kaelbling, ECML/PKDD-2010



Concept invention

New concepts allow predictive theory to be expressed more
compactly and learned from less data

p1(X) :- -3Y. on(X,Y) X is in the hand
p2() :- =3Z. pl(Z) nothing is in the hand
p3(X) :- -3Y. on(Y,X) X is clear

p4(X,Y) :- on(X,Y)" X is aboveY

p5(X,Y) :- p3(X) A p4(X,Y) X is on the top of the stack

containingY

fo(X) :- #Y. p4(X,Y) the height of X

Leslie Pack Kaelbling, ECML/PKDD-2010



Rules learned from data

pickup(X): {Y: on(X,Y)}
clear(X), inhand-nil, size(X)>2, size(X)<7->
0.803 :-on(X,Y)
0.093 : no change

picking up middle-
sized blocks usually

Leslie Pack Kaelbling, ECML/PKDD-2010



Rules learned from data

p1ckup(X):
clear(X), inhand-nil, -size(X)<7 >
0.906 : no change

it’s impossible to
pick up very big
blocks

Leslie Pack Kaelbling, ECML/PKDD-2010



Rules learned from data

pickup(X): {T: table(T)}, {Y: on(X,Y), on(Y,T)}
clear(X), inhand-nil, size(X)<Z2 =
0.105 :-on(X,Y)
0.582 :-on(Y,T)
0.312 : no change

if a tiny block is on
another block that is on
the table, and we try to
pick up the tiny block,

we’ll often pick up the
other block as well, or
fail

Leslie Pack Kaelbling, ECML/PKDD-2010




Planning with learned rules

human performance
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Planning with learned rules

16 -

14

=8= N0 concepts
12 -

human performance

Total Reward

6 I T T T T T
250 375 500 625 750 875 1000

Number of Training Examples



Planning with learned rules

16
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Learning models of partially observable domains

We (the ML community) usually see this problem as a kind of
HMM learning....hard!

Lots of opportunities for at least partial supervision:

* Learn dynamics first, from full observation; then learn
observation model

* learning object permanence
* Eventually get local, correct observation
* see inside the cupboard

» correlate visual observations with
more reliable laser observations

* PSR learningis completely supervised (but compression is
the issue)

Leslie Pack Kaelbling, ECML/PKDD-2010



Help us learn

World dynamics models
* at multiple levels of abstraction
* from semi-partially observable data

Meta-cognitive knowledge
* how to construct hierarchy effectively
* what aspects of the domain to filter more carefully
* what level of fidelity is needed in a model
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