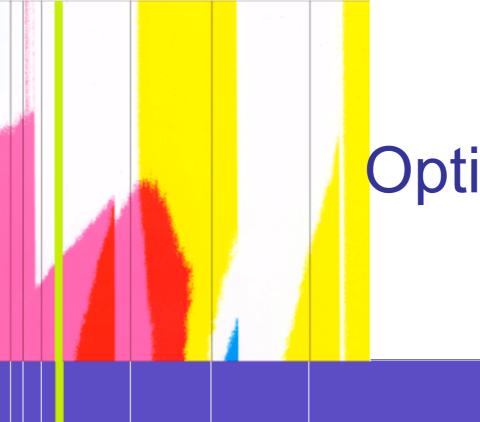
Combinatorial Optimization in Bioinformatics

Clarisse Dhaenens, Laetitia Jourdan University of Lille - France

> INSTITUT NATIONAL De Recherche Em Informatique et en Automatique

5th IAPR International Conference on Pattern Recognition in Bioinformatics 22-24 September 2010, Nijmegen, The Netherlands

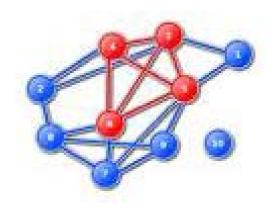
Outlines


Optimization Combinatorial optimization MetaHeuristics Multi-objective optimization

Applications in Bioinformatics Combinatorial optimization for Datamining Feature selection Association rules A Genetic algorithm for Molecular docking

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL De Recherche En Informatique et en automatique



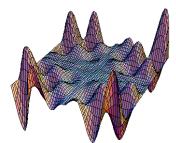
Optimization ??

INSTITUT NATIONAL BE RECHERCHE En informatique et en automatique

A small introduction to

COMBINATORIAL OPTIMIZATION

C. Dhaenens, L. Jourdan – PRIB 2010


INSTITUT NATIONAL De Recherche En Informatique et en Automatique

Definition

Wikipedia

Combinatorial optimization is a topic in theoretical computer science and applied mathematics that consists of finding the least-cost solution to a mathematical problem in which each solution is associated with a numerical cost.

$$(\mathbf{P}) \qquad Opt \ F(x) \longrightarrow$$

s.c.
$$x \in C \longrightarrow$$

Cost = objective function (min/max)

Set of feasible solutions defined using constraints

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL De Recherche En Informatique et en Automatique

Combinatorial problem

Model: different elements to be defined

- Solutions
 - How to characterize a solution?
 - How to define feasible solutions?
- Objective function
 - What is the criterion to optimize (cost, duration...)?
 - Is there only one criterion?

An example: The traveling salesman problem (TSP)

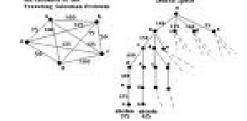
- First formulated as a mathematical problem in 1930
- One of the most intensively studied problems in optimization (Operations Research)
- « Given a list of cities and their pairwise distances, the task is to find a shortest possible tour that visits each city exactly once. »

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL De Recherche En informatique et en automatique

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL DE RECHERCHE En informatique et en automatique

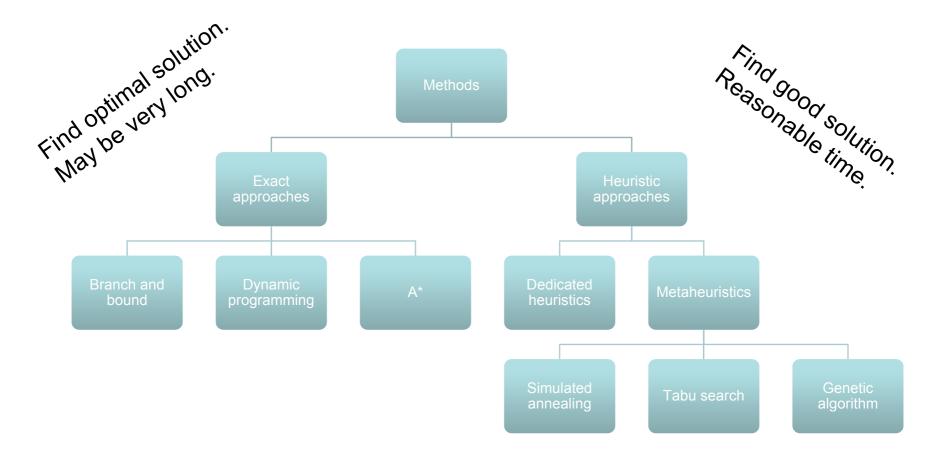


The traveling salesman problem

- NP-hard problem
 - No efficient (polynomial) algorithm
- Simple resolution: Exhaustive enumeration of all solutions If N cities → (N-1)! Possibilities
 - Ex : 5 cities \rightarrow 12 possibilities 10 cities \rightarrow 181 440 possibilities 20 cities \rightarrow 60 × 10¹⁵
- Let's suppose a computer requires 1/2 microsecond to evaluate a tour.

Need efficient combinatorial optimization methods

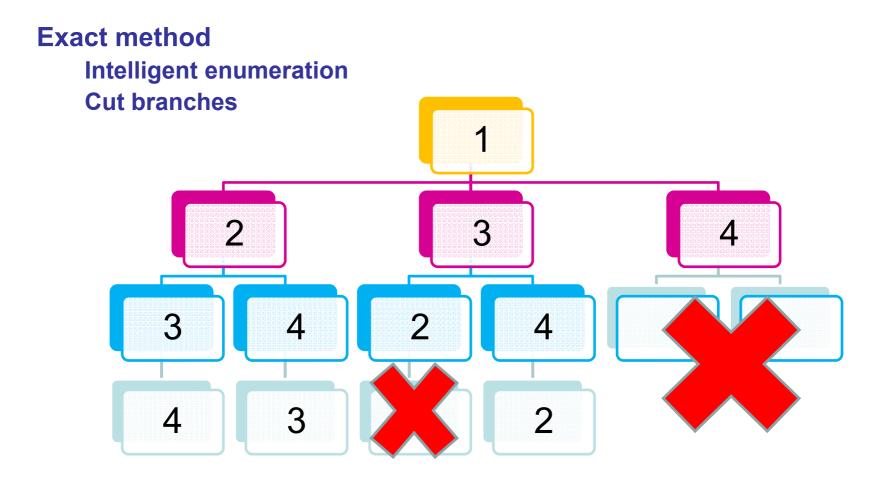
C. Dhaenens, L. Jourdan – PRIB 2010


6 µsec

0,09 sec

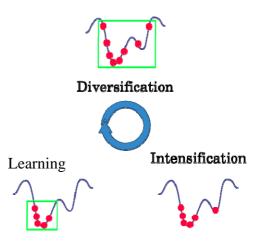
964 years

Combinatorial optimization methods



C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL De Recherche En Informatique et en Automatique


The traveling salesman problem

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL De Recherche En Informatique et en automatique

Presentation

METAHEURISTICS

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL DE RECHERCHE En informatique et en autonatique

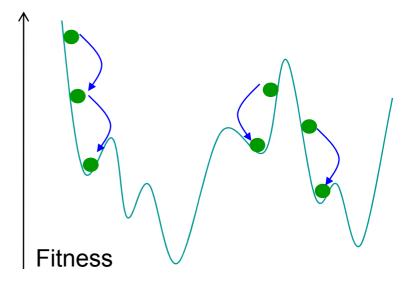
Definition

Wikipedia

- In computer science, **metaheuristic** designates a **computational method** that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality.
- Metaheuristics make few or no assumptions about the problem being optimized and **can search very large spaces** of candidate solutions.
 - However, metaheuristics **do not guarantee an optimal solution** is ever found.
- Many metaheuristics implement some form of **stochastic optimization**.

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL De Recherche Em informatique et en automatique



Descent method

Hill climbing Gradient method

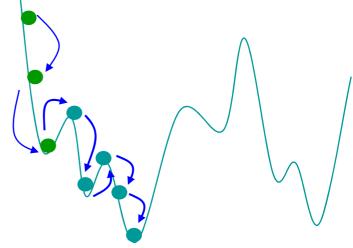
- Neighborhood notion
 - Small modification
 - Local search
- Landscape representation
- From an initial solution
 - Look for a best neighbor
 - Move to this neighbor
 - When no better neighbor \rightarrow local optimum

C. Dhaenens, L. Jourdan – PRIB 2010

Minimization problem

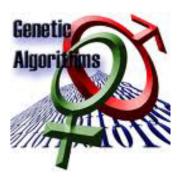
Tabu search

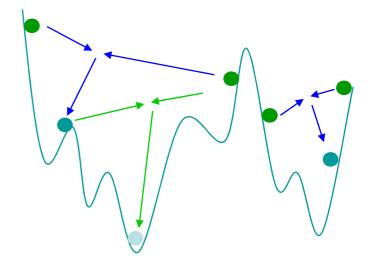
[Glover, 1986]

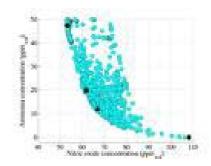

- From an initial solution
 - Look for a best neighbor
 - Move to this neighbor
 - When no better neighbor
 - May degrade the solution
 - Interdiction to come back to recently visited solution (tabu solutions)
 - Parameters:
 - Tabu move
 - Size of the Tabu list (short term memory)

Simulated annealing

- Name inspired from annealing in metallurgy
- From an initial solution
 - Look for a neighbor
 - If better solution
 - Move to this neighbor
 - If not
 - Accept to move to this neighbor according to a probability that depends on a temperature T
 - Parameters:
 - Management of temperature T






Genetic algorithm

- Population based (set of solutions)
- Inspired by natural evolution
 - Inheritance
 - Selection
 - Mutation ...
- Global improvement
- Parameters:
 - Objective function
 - Population size
 - Operators
 - Selection of parents
 - Replacement

Introduction to

MULTI-OBJECTIVE OPTIMIZATION

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL De Recherche En Informatique et en automatique

Motivations

- Many real world problems are multi-objective by nature
- Objectives may be in conflict
- Not always possible to construct a single criterion

Main concepts

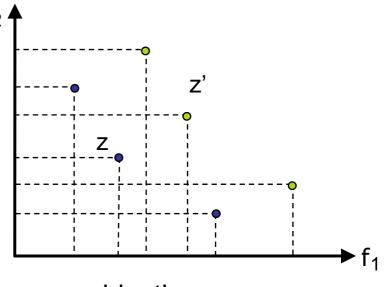
• Multi-objective Optimization Problem (MOP):

(MOP) =
$$\begin{cases} \min (\text{or max}) f(x) = (f_1(x), f_2(x), ..., f_n(x)) \\ \text{Subject to } x \in X \end{cases}$$

- n \geq 2 objective functions $f_1(x),\,f_2(x),\,\ldots,\,f_n(x)$
- $\mathbf{x} \in X$ is a decision vector $(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k)$
- X is the set of feasible solutions in the decision space
- Z is the set of feasible points in the objective space

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL De Recherche En Informatique et en Automatique



Dealing with multiple objectives

Definitions:

- $z \in Z$ dominates $z' \in Z$ iff $\forall i \in [1..n], z_i \le z_i'$ and $\exists j \in [1..n], z_j < z_j'$.
- z C Z is a non-dominated vector if there does not exist another z' C Z such f₂
 that z' dominates z.
- The **Pareto frontier** is the set of all nondominated points.
- The efficient set is the set of all efficient solution.

- non-dominated point
- dominated point

objective space

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL De Recherche En Informatique et en automatique

Difficulties of MOP

- Definition of the optimality: partial order relation, final choice depend on the decision
- Number of Pareto solutions grows with the problem size and the number of criteria
- For non convex MOP, solutions are not all located on the domain boundary but also in the convex hull → difficulty to find them.
- Performance assessment is difficult (comparisons of methods = comparisons of sets of solutions)

Population based algorithms are well fitted to solve Multi-objective problems

Non-dominated Sorting GA (NSGA-II) [Deb et al. 2002]

- Initialization of population P
- Fitness assignment non-dominated sorting
 - Population divided into fronts
 - Fitness (x) = index of the front x belongs to

- Pareto based
- **Diversity** preservation ⇔ crowding distance.
- **Selection** \Leftrightarrow Binary tournament
- Recombination and mutation operators
- Replacement <> N worst individuals are removed
- Elitism \Leftrightarrow Archive A of potentially efficient solutions

Indicator-Based EA (IBEA) [Zitzler et al. 2004]

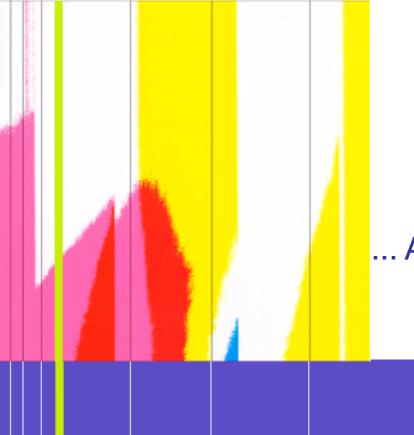
- Initialization of population P
- Fitness assignment quality indicator Q_i:
 - Fitness (x) = Q_i (x , $P \setminus \{x\}$)
- Diversity preservation <> none
- Selection <> binary tournament
- Recombination and mutation operators
- Replacement remove the worst individual and update fitness values until |P| = N
- Elitism
 Archive A of potentially efficient solutions

i -Indicator based

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL De Recherchi En Informatiqui et en Automatiqui

5th IAPR International Conference on Pattern Recognition in Bioinformatics 22-24 september 2010, Nijmegen, The Netherlands

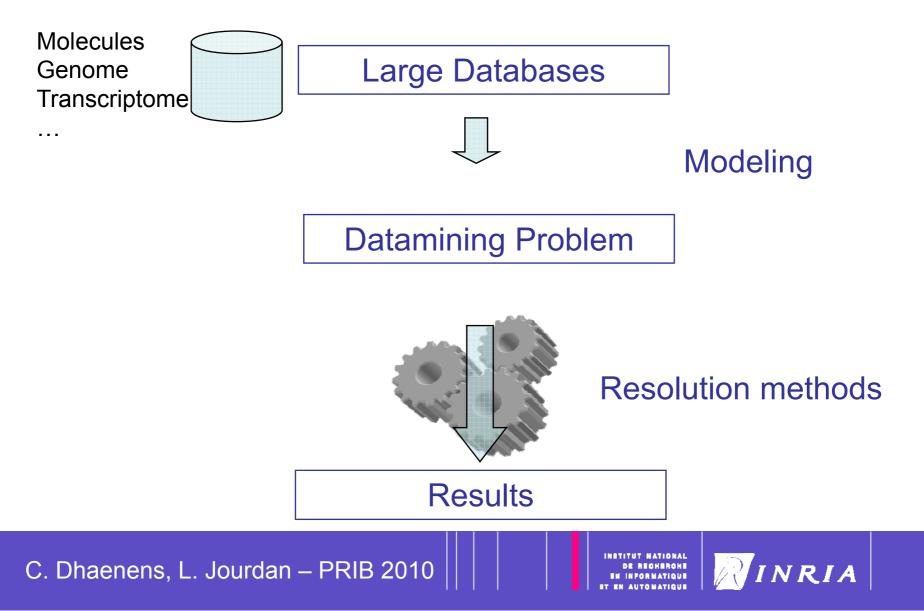

Outlines

Datamining examples

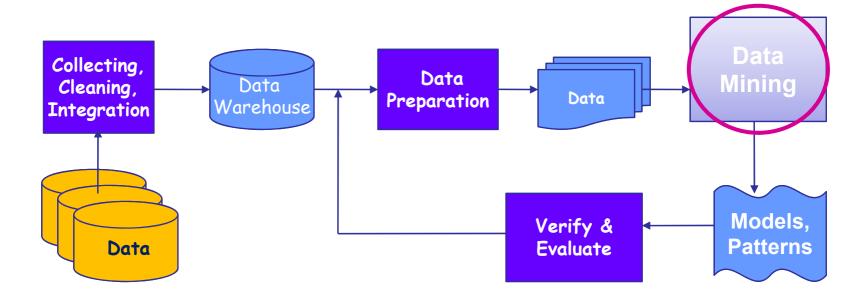
→ Modeling datamining tasks as MCOP (Multi-Objective Combinatorial Optimization Problems)

- → Clustering
- \rightarrow Association rules
- Molecular docking
 - \rightarrow New optimization model
 - → Efficient optimization methods

Datamining in Bioinformatics

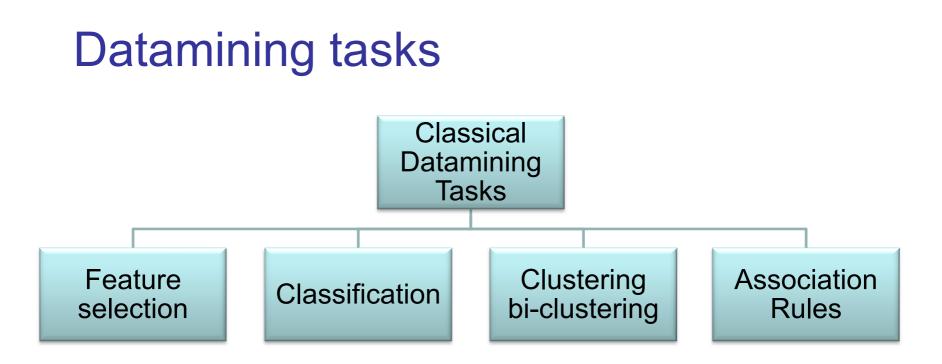

... A combinatorial optimization problem

INSTITUT NATIONAL DE RECHERCHE En informatique et en automatique

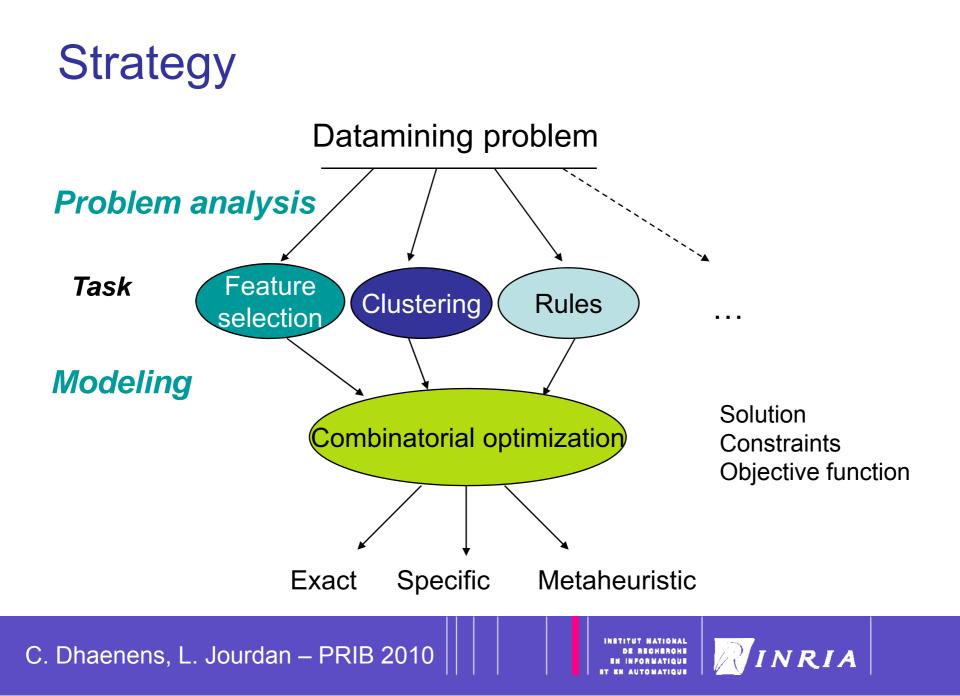


Datamining in bioinformatics

Datamining / machine learning


 One step of the complex Knowledge Discovery in Databases (KDD) process

C. Dhaenens, L. Jourdan – PRIB 2010


INSTITUT NATIONAL DE RECHERCHE En informatique et en automatique

- Feature selection: to reduce the complexity of the problem
- Classification: supervised learning
- Clustering: unsupervised classification
- Association rules: represent relation between features

Feature selection for

CANCER DIAGNOSIS

C. Dhaenens, L. Jourdan – PRIB 2010

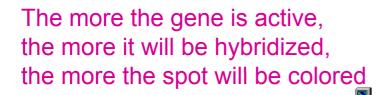
INSTITUT NATIONAL De Recherche En Informatique et en automatique

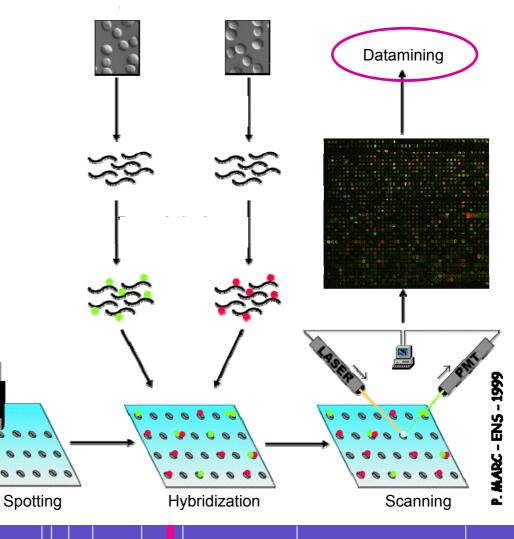
Outline

- Context: Microarray experiment
- Feature selection presentation
- Methodology
- Results

Context: microarray technology

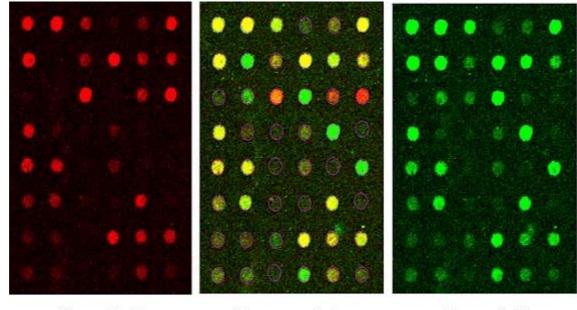
- Microarray experiments
 - Measure the gene expression levels of thousands of genes simultaneously
 - Allow to compare


 \rightarrow several conditions: tissue, treatment or time point.


- Used to
- Identify genetic factors for some diseases (diabetes, obesity, coronary heart disease,...)
- Identify function of some genes in genome

Context: microarray experiment

- Specific receptors that may recognize genes are spotted
- Extracts of DNA are:
 - Colored (green/red)
 - Hybridized with receptors



VRIA

C. Dhaenens, L. Jourdan – PRIB 2010

Pcr

Context: microarray experiment

Scan Cy5

Superposition

Scan Cy3

A result example : colors indicate over/under expressed genes

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL De Recherche En Informatique et en automatique

Context: microarray data

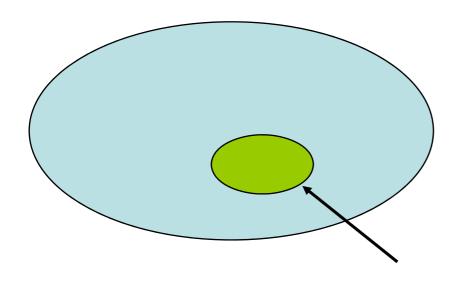
- Different data matrices
 - Gene table
 - Rows: genes (G).
 - Columns: conditions (C)
 - Treatment table
 - Rows: Interactions (I).
 - Columns: genes (G).
- Nature of the data

Activity of genes are represented as numerical values

Discretize them into 5 values :

High Increase,Increase,No Change,Decrease,High Decrease.

C. Dhaenens, L. Jourdan – PRIB 2010


In

	G	1					
	•			·			
	•				·		
	•					•	
	G	n				•	
_							
		31	•	•	•	Gm	
:	Ι1	·					V1
	•		•				•

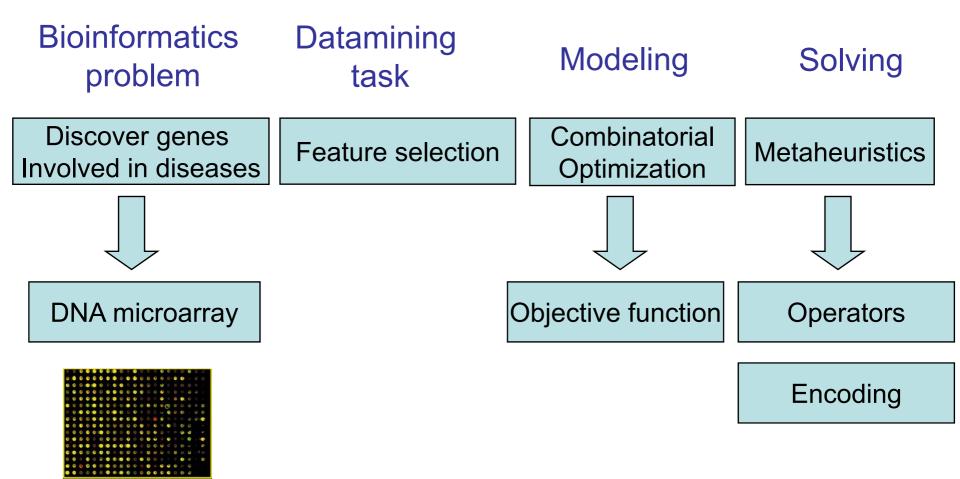
C1 . . . Cm

Feature selection

Large set of features (genes, products, ...)

- Redundancy
- Noise

Subset of features


- Significant
- Improve classification

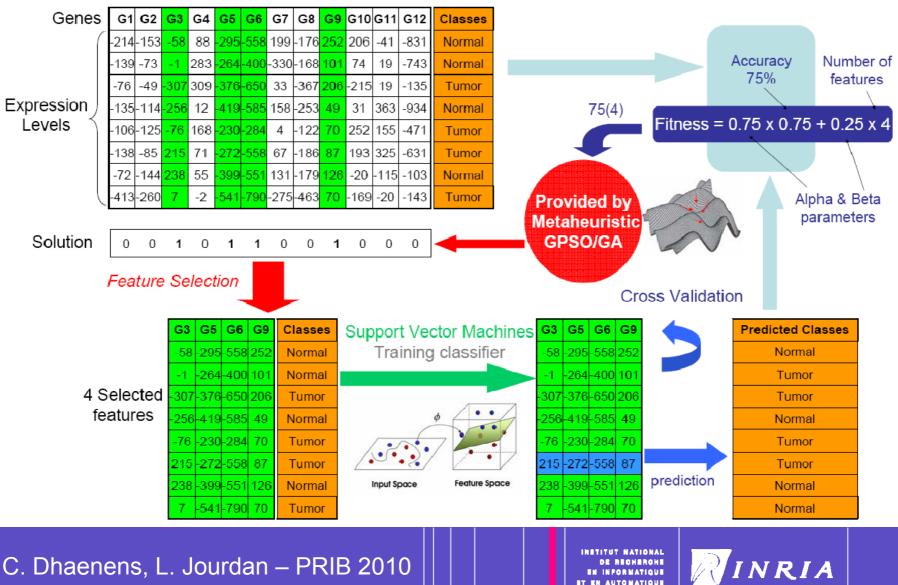
C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL De Recherche En Informatique et en automatique

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL De Recherche En Informatique et en Automatique

Objectives


- Distinguish (Classify) tumor samples from normal ones (2 classes)
- Discover reduced subsets with informative genes, achieving high accuracies
- Classification with Support Vector Machines
- Algorithms comparisons.
 - 2 optimization algorithms (metaheuristics)
 - GPSO Geometric Particle Swarm Optimizer
 - GA Genetic Algorithm
- Experimentations using 6 public cancer datasets

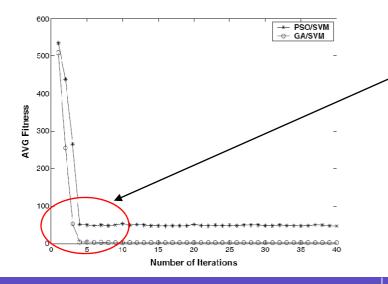
E. Alba, J. Garcia-Nieto, L. Jourdan, E-G. Talbi. Sensitivity and Specifity Based Multiobjective Approach for Feature Selection: Application to Cancer Diagnosis. Information Processing Letters, Volume 109 (16), p 887-896, 2009

FS Methodology

Data Sets - Kent Ridge Bio-medical Data Set Repository

http://sdmc.lit.org.sg/GEDatasets/Datasets.html

- ALL-AML Leukemia 7129 gene expression levels and 72 samples
- Breast Cancer
- Colon Tumor
- Lung Cancer
- Ovarian Cancer
- Prostate Cancer
- (129) gene expression levels and 72 samples
 24481 gene expression levels and 97 samples
 2000 gene expression levels and 62 samples
 12533 gene expression levels and 181 samples
 15154 gene expression levels and 162 samples
 12600 gene expression levels and 136 samples


Few samples / number of genes

Performance Analysis: comparison of the two algorithms

Dataset	GPSO	GA	Huerta et al.	Juliusdotir et al.	Deb et al.	Guyon et al.	Yu et al.	Liu et al.	Shen et al.
Leukemia	97.38(3)	97.27(4)	100(25)	-	100(4)	100(2)	87.44(4)	-	-
Breast	86.35(4)	95.86(4)	-	-	-	-	79.38(67)	-	-
Colon	100(2)	100(3)	99.41(10)	94.12(37)	97(7)	98(4)	93.55(4)	85.48(-)	94(4)
Lung	99.00(4)	99.49(4)	-	-	-	-	98.34(6)	-	-
Ovarian	99.44(4)	98.83(4)	-	-	-	-	-	99.21(75)	-
Prostate	98.66(4)	98.65(4)	-	88.88(20)	-	-	-	-	-

In few iterations the average of fitness Decrease quickly

GAsvm obtains generally lower average than GPSOsvm, whose solutions have in turn higher diversity

C. Dhaenens, L. Jourdan – PRIB 2010

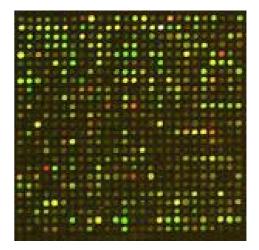
INSTITUT NATIONAL DE RECHERCHE En informatique et en automatique

Examples of Selected Gene Subsets

Dataset		PSO_{SVM}		GA_{SVM}
Leukemia	100(3)	U39226_at, L12052_at,	100(4)	Z26634_at, HG870-HT870_at
Leukenna		X99101_at		X52005_at, L02840_at
Breast	90.72(4)	NM_012269, NM_002850	100(4)	NM_005014, AF060168
Dieast		AL162032, AB022847		NM_021176, NM_013242
Colon	100(2)	U29092, M55543	100(3)	M90684, M94132
Colon				X62025
Lung	99.44(4)	31820_at, 33389_at	100(4)	31573_at, 33226_at
Lung		39057_at, 40772_at		36245_at, 37076_at
Ovarian	100(4)	MZ49.784115, MZ3546.2884	100(4)	MZ420.40671, MZ825.16557
		MZ4362.0866, MZ9159.3641		MZ1024.6857, MZ1166.0749
Prostate	100(4)	35106_at, 35869_at	100(4)	41447_at, 34299_at
Trostate		36754_at, 37107_at		39556_at, 39813_s_at

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL De Recherche En Informatique et en automatique



Conclusions

• Two hybrid algorithms for gene selection and classification of high dimensional DNA Microarray were presented

- New algorithm GPSO for feature selection was applied
- GPSOsvm vs. GAsvm were experimentally assessed on six well-known datasets
- Results of 100% accuracy and few genes per subset (3 and 4)
- Use of adapted initialization method
- Use of adapted operators for FS (3PMBCX & SSOCF)

Association rules for

DNA MICROARRAY

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL De Recherche En Informatique et en automatique

Context: available data

	Gene 1	Gene 2	 	Gene 22000
Patient 1 / Control 1				
Patient 1 /				
Control 2				
 Patient 15 /				
Control 3				

Look for subsets of genes having linked comportments

➔ Association rules

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL De Recherche En Informatique et en automatique

A general approach

Expression data often analyzed thanks to classification/clustering.

But 3 main drawbacks:

- 1. One gene participating to one relation will be classified in a single group
- 2. Difficulty to point out relations between genes belonging to a same group
- 3. Classification made according to the whole set of experiments

Association rules may overcome these drawbacks

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL De Recherche En Informatique et en Automatique

Association Rules: Definition

Goal : Discover patterns, associations between items (columns=attributes) of a database.

Form : *if* C *then* P C = term₁ and term₂ and... and term_n P = term_{n+1} term_i = <attribute_i, *op*, value>

Ass. Rules: examples of results

Association rules may produce different results

- Situation ⇒ Expression of particular genes Situation x ⇒ {Gene A \uparrow , Gene B ↓} [Creighton - Hanash, 03]
- − Relations between genes (general case) {Gene A ↑, Gene B ↓, Gene C ↑} ⇒ Gene D ↑ [Kotala et al, 01]
- Relations between genes (for some situations) [Becquet et al, 02] ${(Gene A ↑, Gene B ↑) in situation y} ⇒ Gene D ↑ in situation y$
- − Comportment of genes ⇒ Functional characteristics ⇒ Structural characteristics {Genes ↑ in situation y} ⇒ Function x [OPAC, IT-Omics, 03]

Ass. Rules: optimization criterion?

Association rules

Classical problem of datamining

Studied by statistic, machine learning, combinatorial optimization,... communities

\Rightarrow a lot of indicators proposed to measure rules quality

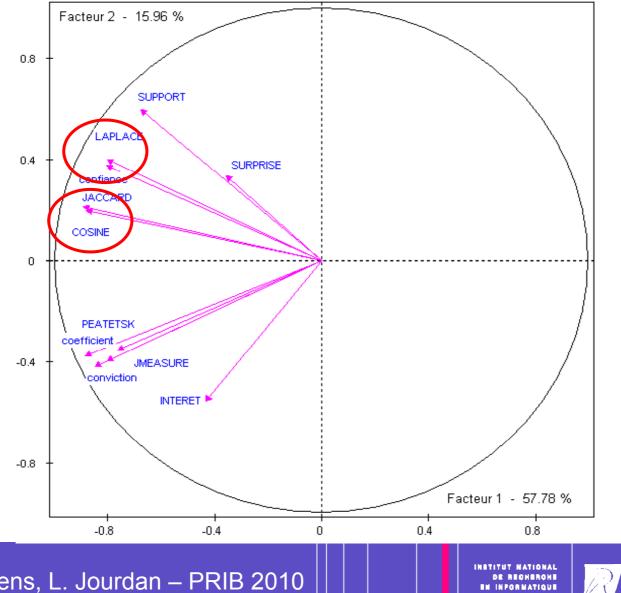
[Hilderman et Hamilton, 1999], [Tan et Kumar, 2002], [Adomavicius, 2002], [Lenca et al, 2003],...

How to choose a good indicator? No universal criterion

Ass. Rules: examples of criteria

Criteria	Math. definition	Explanation
Support S	$\frac{C \ and \ P}{N}$	% lines having C and P
Confidence C	$\frac{C \text{ and } P}{C}$	Conditional probability
Interest I	$\frac{C \text{ and } P}{C \times P}$	Favors rare pattern (small support)
Conviction V	$\frac{C \times \overline{P}}{C \text{ and } \overline{P}}$	Measures the weakness of (C, not P)
Piatetsky-		Measure dependency
Shapiro's PS	$C and P - C \times P$	
Surprise R	$\frac{\left(C \text{ and } P - C \text{ and } \overline{P}\right)}{P}$	Look for surprising rules

Statistical analysis: Matrix of linear correlations


	Supp	Conf	Inte	Conv	Surp	Jacc	PhiC	Cos	JMea	Piat	Lapl
Supp	1,00										
Conf	0,62	1,00									
Inte	-0,09	0,20	1,00								
Conv	0,27	0,56	0,47	1,00							
Surp	0,17	0,48	0,07	0,17	1,00						
Jacc	0,87	0,62	0,32	0,55	0,20	1,00					
PhiC	0,38	0,50	0,62	0,81	0,26	0,76	1,00				
Cos	0,86	0,68	0,34	0,56	0,19	0,98	0,76	1,00			
JMea	0,34	0,50	0,40	0,84	0,15	0,64	0,89	0,62	1,00		
Piat	0,29	0,49	0,25	0,71	0,15	0,51	0,75	0,51	0,93	1,00	
Lapl	0,63	0,99	0,18	0,54	0,53	0,61	0,49	0,67	0,50	0,51	1,00

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL De Recherche En Informatique et en Automatique

Correlations between criteria

Statistical analysis: results

5 clusters

- C1 : Support, Cosine, Jaccard
- C2 : Laplace, Confidence
- C3 : Phi-Coefficient, Jmeasure, Piatetsky, Conviction
- C4 : Interest
- C5 : Surprise

Each cluster groups similar criteria \Rightarrow Redundant

Choose one criterion per cluster

Optimization with five objectives

General methodology

Statistical analysis: PCA (Principal component analysis) support, confidence, interest, surprise, conviction...

Multi-objective model for the problem

Design of efficient multi-objective optimization methods

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL DE RECHERCHE En informatique et en automatique

Rulemining: Application overview (1/2)

Set the genetic algorithm:

- Number of generations
- Population size
- Enable/Disable Support, Confidence,

J-measure, Interest, Surprise Criteria

- ...

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL DE RECHERCHE En informatique et en autonatique

Rulemining: Application overview (2/2)

RESULTS

		Particle_10_min	if ((P-Flag-10-4M_10_min(78)=I)) then (Particle_10_min(65)=I)	•¬
Rules list on	tilter :		if ((P-HA-10-5M_0_min(11)=I) and (P-Flag-10-4M_10_min(78)=I)) then (Particle_10_min(65)=I)	
Rules 1	:ı T		if ((P-HA-10-5M_0_min(11)=i) and (P-Flag-10-5M_0_min(32)=i) and (P-Flag-10-4M_10_min(78)=i)) then (Particle_10_min(65)=i)	
Particle_0_min P-HA-10-6M 0 min	[1, 0, 1, 2.22507e-308] if ([Particle_0_min(5)=1) and (P-HA-10-6M_0_min(6)=1) and (P-Flag-10-6M_10_min(66)=1)) then (P-Flag-10-4M_0_min(39)=1)		if ((Particle_0_min(23)=I) and (P-HA-10-5M_0_min(1)=I) and (P-HA-10-4M_10_min(56)=I) and (P-Flag-10-4M_10_min(78)=I)) then (Particle_10_min(65)=I)	
P-Flag-10-6M_10_min P-Flag-10-4M_0_min		P-HA-10-6M_10_min	if ((Particle_0_min(23)=I) and (P-HA-10-5M_0_min(11)=I) and (P-HA-10-6M_10_min(50)=I) and (P-Flag-10-4M_10_min(80)=I)) then (Particle_0_min(25)=I)	
Rules 2			if ((P-HA-10-4M_0_min(19)=I)) then (P-HA-10-6M_10_min(50)=I)	
			if ((Particle_0_min(1)=I) and (P-HA-10-4M_0_min(19)=I)) then (P-HA-10-6M_10_min(50)=I)	N=8N=896N=898598N=898598
Particle_0_min P-HA-10-5M_0_min P-HA-10-4M 10 min	[1, 0, 1, 2.225078-308] if ((Particle_0_min(4)=1) and (P-HA-10-5M_0_min(14)=1) and (P-HA-10-4M_10_min(58)=1)) then (P-Flag-10-4M_10_min(76)=1)		if ([Particle_0_min(1)=I) and (P-HA-104M_0_min(16)=I) and (Particle_10_min(41)=I)) then (P-HA-10-6M_10_min(50)=I)	
P-Flag-10-4M_10_min P-Flag-10-4M_10_min	÷ ÷ i i	P-HA-10-5M_10_min	if ((P-HA-10-5M_10_min(55)=I) and (P-HA-10-4M_10_min(57)=I)) then (P-Flag-10-4M_0_min(40)=I)	ŝ
Rules 3			if ((Particle_0_min(4)=I) and (Particle_10_min(43)=I)) then (P-HA-10-5M_10_min(55)=I)	.] handalmatka jirahai kadhanka hanka ha
P.HA.10.4M 0 min	[1, 0, 1, 2, 22507e-308] if ((P-HA-104M 0 min(17)=1) and (P-Flag-104M 0 min(38)=1) and		if ((P-Flag-10-4M_0_min(37)=I)) then (P-HA-10-5M_10_min(55)=I)	
	(P-Flag-10-5M_10_min(72)=I)) then (P-Flag-10-6M_10_min(68)=I)		if ((Particle_0_min(4)=1) and (Particle_10_min(43)=1) and (P-Flag-10-5M_10_min(74)=1)) then $(P-HA-10-5M_10_min(55)=1)$	
P-Flag-10-6M_10_min			$\label{eq:constraint} \begin{array}{l} \text{if } (Particle_0_min(4)=l) \mbox{ and } P4ticle_10_min(43)=l) \mbox{ and } P4ticle_10_min(74)=l) \mbox{ and } P4ticle_10_min(57)=l) \mbox{ be the straint} \end{array}$	/
Rules 4			if ((Particle_10_min(64)=I) and (P-HA-10-4M_10_min(57)=I) and (P-HA-10-5M_10_min(55)=I)) the (P-Flag-10-5M_0_min(34)=I)	
Particle_0_min P-HA-10-5M 0 min	[1, 0, 1, 2.22507e-308] if ((Particle_0_min(23=)) and (P-HA-10-5M_0_min(13)=1) and (P-Flag-10-4M_0_min(40)=1)		((P-HA-10-4M 10 min(57)=1) and (P-Flag-10-6M 0 min(29)=1) and (Particle 10 min(64)=1) and	
P-Flag-10-4M_0_min	and (Particle_10_min(43)=1)) then (P-Flag-10-4M_10_min(76)=1)		(P-HA-10-5M_10_min(55)=I)) then (P-Flag-10-4M_0_min(37)=I)	
Particle_10_min P-Flag-10-4M_10_min			$\label{eq:constraint} \begin{array}{l} \text{if } (Particle_0_min(50)=1) \text{ and } (P_11A_10_4M_0_min(50)=1) \text{ and } (P_11A_10_4M_10_min(57)=1)) \text{ then } (P_Flag_10_5M_0_min(35)=1) \end{array}$	
	🥹 https://www.genopole-lille.fr 🗕 🗆 🗙	<u>```</u>		
	<u>Fi</u> chier <u>E</u> dition <u>A</u> ffichage <u>Al</u> ler à <u>M</u> arque-p			
	Particle_0_min (2) =I Quartile 1 : 1064			
	Quartile 3 : 5957			
		parte handandemeteren		
	Measures of each reporters	1.01		
		Measu	res in Visual Barplot	
		6-4	2	
	Terminé www.genopole-lille.fr 🛅			
			DE RECHERCHE	
Dnae	enens, L. Jourdan – PRIB 2010 📗		DE RECHERCHE EN INFORMATIQUE	RTA 🗌

Validation in BASE: Plugins

BioArray Software

Environment. BASE is a

comprehensive free web-

based database solution for

the massive amounts of data

generated by microarray

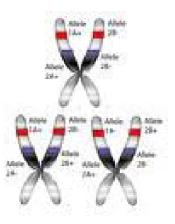
	Plug-ins															
_	Field	Op	Value	Buttons	Translated val	ue										
og out)	· •	- 1		Add/Update												
0	Presets Save curr	rent as new pr	eset Ok													
	Add plug-in															
	< <pre><<pre>next>> 1</pre></pre>	(12 hits, 15 p	er page)													
	Name 7			Unique name			Added	Owner	_				Avg over	Leave		_
	Analysis: Hierarch	nical clustering		thep.lu.se/cecili			2002-05-31			none ()			Rep.	in	Local	[Exp
	Analysis: MDS			thep.lu.se/carl/n		1.0		root	-	none ()			Rep.		Local	[Exp
	Analysis: PCA			ngelab.org/voror			2002-08-31			none ()		Yes	-		Local	[Exp
	classification: plug			example.com/us	11 0		2005-07-18		_	none ()		Yes		in, out		[Exp
	Hypothesis Testin			lob.uu.se/ospjut			2005-06-24			none ()		Yes			Local	[Exp
		•	DupCorr (Bioconductor)	lcb.uu.se/ospjut						none ()		Yes	-		Local	[Exp
usage	Normalization: Glo	obal median ra	tio	thep.lu.se/bjorn/	medianratio	1.0	2002-08-31	1 root		none ()	r-	Yes			Local	[Exp
ent	Normalization: LIN	MMA+SMA (Bi	oconductor)	lob.uu.se/ospjut	h/morm	1.01	2005-06-24	1 laurence		none ()		Yes			Local	(Exp
	Normalization: LIN	MMA+SMA Be	tween Arrays (Bioconducto	 cb.uu.se/ospjut 	h/morm.btw.arr	0.9	2005-06-24	laurence		none ()		Yes			Local	[Exp
vers	Normalization: Lov	wess	\	thep.lu.se/bjorn/	lowess	1.0	2002-08-31	1 root		none ()	r-	Yes	-		Local	[Exp
	Transformation: M	linimum intens	ity	thep.lu.se/carl/n	ninintensity	1.1	2005-07-19	9 root	Γ	none ()		Yes	-		Local	[Exp
	Vizualization: Arra	yplots (Biocor	ductor)	Nb.uu.se/ospjut	h/arrayplots	1.01	2005-06-24	1 laurence	Г	none ()		Yes			Local	[Exp
	Activate 💌 m	narked plug-ins			access. W	orld:	same 💌	access.	Ok						ed / Del	
oite	Update marked:	owner. serie		`	\backslash									Indelet		eted
site				`	\backslash									Indelet		leted /
	Import plug-in o	definition	_ ,		\backslash					ī				Indelet		leted /
from		definition ed file - none		arcourir Max	32.0 MB)	olate	after use		2	Ī				Indelet		leted /
from from	Import plug-in o Select an uploade	definition ed file - none		arcourir Max	32.0 MB) [C	olete	after use			Ī				Indelet		leted /
from	Import plug-in o Select an uploade Or pick a file to u File description	definition ed file - none		arcourir (Max	32.0 MB) C	olete	after use		2	Ĩ				Indelet		eted /
from from kob done: tome kob done:	Import plug-in o Select an uploade Or plok a file to u	definition ed file - none		arcourir (Max	32.0 MB)	olete	after use			Ī				Indelet		eted /
from from kib dane: tob kib dane: kib dane: lots	Import plug-in o Select an uploade Or pick a file to u File description	definition ed file - none		arcourir Max	32.0 MB)	olete	e after use			ī				Indelet		eted /
from from kob done: tome kob done:	Import plug-in o Select an uploade Or pick a file to u File description	definition ed file - none		arcourir (Max				am		ni	n	1 r				
from from kib done: tob done: kib done: lots	Import plug-in o Select an uploade Or pick a file to u File description	definition ed file - none		arcourir (Max			atter use	am	ni	ni	nç	3 1				
from from kib done: tob done: kib done: lots	Import plug-in o Select an uploade Or pick a file to u File description	definition ed file - none		arcourir (Max	1	\ >							too	٦l:	s a	

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL De Recherchi En Informatiqui et en automatiqui

Conclusion

- This plugin has been tested on several classical databases for microarray experiments, it shows very good results
- Associated publications:


G. Even, P. Laurence, C. Dhaenens and E-G. Talbi. "Rulemining : A new analysis tool for PASE, the web-based platform for polypeptide chips experiments", Poster, JOBIM 2007.

G. Even, L. Jourdan, C. Dhaenens and E-G. Talbi. "Evolutionary feature selection plugin for BASE", Poster, JOBIM 2007.

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL De Recherche En informatique et en automatique

Association rules for

LINKAGE DESEQUILIBRIUM

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL De Recherche En Informatique et en automatique

Linkage disequilibrium study

Objective:

Find set of haplotypes (of size between 3 and 6) which can explain the status of people in the context of the type 2 diabetes

Data:

- For each individual: the value of its SNPs and its status
- For each SNP: allels frequencies
- For each two by two combination of SNPs: their disequilibrium

Constraints:

- Snips of an haplotype must be independent:
 - Difference of frequencies < threshold1.
 - Linkage disequilibrium > threshold2.

Approach

- Search method : An adaptive multi-population genetic algorithm
- A specific evaluation function based on classical biological software : CLUMP and EH-DIALL

Results

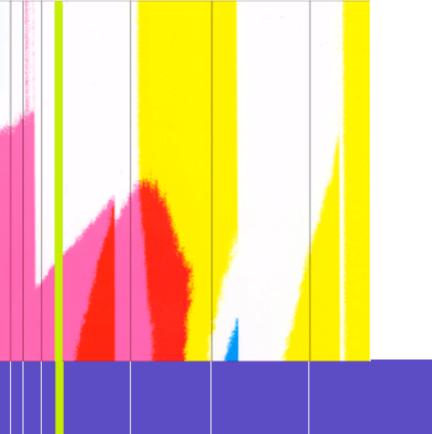
Association rules such as :

- SNP₁₀=1-2 and SNP₂₀=2-2 THEN Status=ill
- SNP₁₇=1-1 and SNP₄₅=2-2 THEN Status=ill

Conclusions

- Many problems in bioinformatics are combinatorial by nature
- Operations research (optimization) may give answers to these problems in term of:
 - Modeling
 - Definition of objective functions (quality of solutions)
 - Possibility to have several quality measures
 - Possibility to use complex evaluation of solutions
 - Provide guidelines to develop efficient optimization methods (Metaheuristics)

C. Dhaenens, L. Jourdan – PRIB 2010


INSTITUT NATIONAL De Recherche En Informatique et en Automatique

Perspectives

- Future researches?
- Still need more knowledge about the domain
- Hybridization of methods of different types:
 - Hybridization with domain specific methods
 - Hybridization with statistical methods

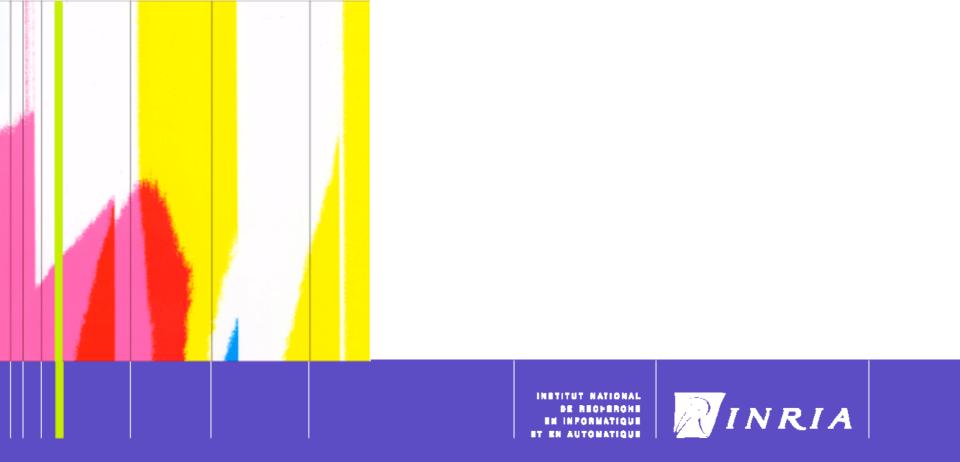
Questions ??

INSTITUT NATIONAL DE RECFERCHE En informatique et en automatique

To go further ...

PRIB 2010 presentations

Optimization Algorithms for Identification and Genotyping of Copy Number Polymorphisms in Human Populations Gökhan Yavaş, Mehmet Koyutürk, and Thomas LaFramboise


Iterated Local Search for Biclustering of Microarray Data Wassim Ayadi, Mourad Elloumi, and Jin-Kao Hao

Pattern Recognition for High Throughput Zebrafish Imaging using Genetic Algorithm Optimization Alexander E. Nezhinsky and Fons J. Verbeek

C. Dhaenens, L. Jourdan – PRIB 2010

INSTITUT NATIONAL De Recherche En Informatique et en Automatique

