

Department of Informatics

Seven Commandments for Benchmarking Semantic Flow Processing Systems

Thomas Scharrenbach,

Jacopo Urbani,

Alessandro Margara,

Emanuele Della Valle, and

Abraham Bernstein

How close are we from the **Perfect Benchmark** for Semantic Flow Processing Systems?

The nature of flows requires *a paradigmatic change**

Persistent data

- to be stored and queried **on demand**
- a.k.a. one time semantics

Transient data

- to be consumed on the fly by continuous queries
- a.k.a. continuous
 semantics

*This paradigmatic change first arose in DB community

Transient Data - Flow Processing Systems

What are data flows?

Formally:

 Data flows are unbounded sequences of time-varying data elements

Less formally:

- an (almost) "continuous" *flow of information*
- with the recent information being more relevant as it describes the *current state of a dynamic system*

Flow Processing Systems

Great, but what about **semantics**?

Semantics – the missing bit for Information Flow Processing

Information Flow Processing		Semantic Web
\checkmark	Continuous semantics	×
\checkmark	Scalable processing	1
\checkmark	Real-time systems	×
×	Powerful query languages	1
×	Rich ontology languages	\checkmark

Semantic Days 2012 - Emanuele Della Valle - http://streamreasoning.org

Semantics – the missing bit for Information Flow Processing

Semantic Flow Processing					
Continuous semantics	\checkmark				
Scalable processing	\checkmark				
Real-time systems	\checkmark				
Powerful query languages	\checkmark				
Rich ontology languages	\checkmark				

Semantic Days 2012 - Emanuele Della Valle - http://streamreasoning.org

From Triples Stores to Flows of RDF

1. Extend RDF data model with the 2. Extend SPARQL notion of **RDF Stream**

to express and process **continuous** queries

Existing languages/engines

- CQELS
- SPARQL_{STREAM}
- C-SPARQL
- EP-SPARQL

Benchmarking

What system does the job with the *lowest cost-of-ownership*?

The solution

- Define a benchmark (or workload)
- run on several different systems
- KPI:
 - throughput metric (work/sec)
 - five-year cost-of-ownership metric

Why benchmarking?

- make competing products comparable
- accelerate progress, make technology viable
- scientific method
- highlight both strong and weak points
- 29.05.13 Seven Commandments for Benchmarking SFP Systems Scharrenbach, Urbani, Margaga, Della Valle and Bernstein

Why Should You Care? Most papers on ... few papers Semantic Flow Processing systematically evaluate these systems. describe systems... **EP-SPARQL** SR-Bench Anicic et a. (2011) Zhang et al. (2012) CQELS LS-Bench Le-phuoc et al. (2011) Le-phuoc et al. (2012) C-SPARQL Barbieri et al. (2010) MIND THE GAP SPARQL_{Stream} Calbimonteet al. (2010) http://openclipart.org/detail/16126/chasm-by-rygl

Background Benchmarking RDF stream engines

Relational

Linear Road

Oracle for validation

- Dataset: simulator
- No queries but use-case specification plus validator.
- KPI: feature coverage and correctness

Fast Flower Delivery

- Use-case description with expected results.
- Must-to-implement for commercial CEP systems.

Graph

SRBench

- Dataset: Linked Not verified meteorological sensor data)
- Queries: 17 continuous queries, some requiring RDFS reasoning
- KPI: feature coverage and correctness

LSBench <

 Dataset: synthe inspired data se Verified comparing the number of results produced by different solutions

- Queries: 12 con multiple stream and static кnowledge
- KPI: input throughput and correctness

SFP Systems are Reactive

- 1. Answer must arrive within a given time
- 2. Answers received after that time are useless

The is no benchmark to test them all!

http://en.wikipedia.org/wiki/File:Unico_Anello.png

Does throughput matter without correctness?

Dell'Aglio et al, BerSys 2013

How much does an enhancement in completeness cost?

http://greniertv.site88.net/hagar-le-viking-les-comic-strips/

From analyzing the key challenges...

...to a **systematic guideline for assessing the Key Performance Indicators** of SFP systems

29.05.13 Seven Commandments for Benchmarking SFP Systems Scharrenbach, Urbani, Margaga, Della Valle and Bernstein

How close are we from the **Perfect Benchmark**?

Properties of Semantic Flow Processing Systems

29.05.13 Seven Commandments for Benchmarking SFP Systems Scharrenbach, Urbani, Margaga, Della Valle and Bernstein

Challenge C1: Managing Background Data

	LR	FFD	SR- Bench	LS- Bench
S3: Joins and Inference in Flow, BG-Data	×	×	1	1
S6: Schema	×	0	1	0
S7: Changes in Background-Data	×	×	0	0

Challenge C2: Expressive Power of Inference

		LR	FFD	SR- Bench	LS- Bench
S1: Load Balancing					
S2: Joins and Inference on	simple				
Flow Data Only	sequential				
	temporal				
S3: Joins and Inference in Flow, BG-Data		×	×	1	1
S4: Aggregates	shrinking				
	non-shrinking				
S5: Unexpected Data	out-of-order				
	missing				
S6: Schema		×	0	1	0
S7: Changes in Background-Data		×	×	0	0

Challenge C3: Time Modeling

		LR	FFD	SR- Bench	LS- Bench
S1: Load Balancing					
S2: Joins and Inference on	simple	1	~	1	1
Flow Data Only	sequential	\checkmark	0	0	0
	temporal	0	1	0	0
S3: Joins and Inference in Flow, BG-Data					
S4: Aggregates	shrinking	×	×	0	0
	non-shrinking	\checkmark	1	1	\checkmark
S5: Unexpected Data	out-of-order	0	×	0	0
	missing	0	0	0	0
S6: Schema					
S7: Changes in Background-Data					

Challenge C4: Querying

		LR	FFD	SR- Bench	LS- Bench
S1: Load Balancing					
S2: Joins and Inference on	simple	1	1	1	1
Flow Data Only	sequential	1	0	0	0
	temporal	0	\checkmark	0	0
S3: Joins and Inference in Flow, BG-Data		×	×	1	~
S4: Aggregates	shrinking	×	X	0	0
	non-shrinking	\checkmark	1	1	\checkmark
S5: Unexpected Data	out-of-order	0	×	0	0
	missing	0	0	0	0
S6: Schema					
S7: Changes in Background-Data					

Challenge C5: Managing Bursts

	LR	FFD	SR- Bench	LS- Bench
S1: Load Balancing	0	0	0	0
S2: Joins and Inference on Flow Data Only				
S3: Joins and Inference in Flow, BG-Data				
S4: Aggregates				
S5: Unexpected Data				
S6: Schema				
S7: Changes in Background-Data				

How close are we from the Perfect Benchmark?

		LR	FFD	SR- Bench	LS- Bench
S1: Load Balancing		0	0	0	0
S2: Joins and Inference on	simple	1	1	1	~
Flow Data Only	sequential	1	0	0	0
	temporal	0	1	0	0
S3: Joins and Inference in Flow, BG-Data		×	×	1	1
S4: Aggregates	shrinking	×	×	0	0
	non-shrinking	\checkmark	\checkmark	1	\checkmark
S5: Unexpected Data	out-of-order	0	×	0	0
	missing	0	0	0	0
S6: Schema		×	0	1	0
S7: Changes in Background-Data		×	×	0	0

How close are we from the Perfect Benchmark?

		LR	FFD	SR- Bench	LS- Bench
S1: Load Balancing		0	0	0	0
S2: Joins and Inference on	simple	1	~	1	~
Flow Data Only	sequential	1	0	0	0
	temporal	0	~	0	0
S3: Joins and Inference in Flow, BG-Data		×	×	1	1
S4: Aggregates	shrinking	×	×	0	0
	non-shrinking	\checkmark	1	1	1
S5: Unexpected Data	out-of-order	0	×	0	0
	missing	0	0	0	0
S6: Schema		×	0	1	0
S7: Changes in Background-Data		×	×	0	0

How close are we from the Perfect Benchmarks? Appropriate

Limitations

We did not implement a concrete benchmark.

- No bias towards a specific challenge/stress test.
- Distinguish between the abstract definition and its implementation.
- There is no such thing as a universal benchmark.

No standards exist for comparing different SFP systems.

- How can we describe configurations?
- What makes two systems comparable?

Conclusion

- 1. SFP research needs to become **more empirical**.
- 2. There are more KPIs than throughput only.
- 3. PCKS: **systematically stress-test** your SFP system.
- 4. **Re-Use current benchmarks** to implement PCKS pattern.

References

- Anicic, D., Fodor, P., Rudolph, S., & Stojanovic, N. (2011). EP-SPARQL: a unified language for event processing and stream reasoning. In S. Srinivasan, K. Ramamritham, A. Kumar, M. P. Ravindra, E. Bertino, & R. Kumar (Eds.), Proceedings of the 20th international conference on World wide web - WWW '11 (pp. 635–644). New York, NY, USA: ACM.
- Barbieri, D. F., Braga, D., Ceri, S., Della Valle, E., & Grossniklaus, M. (2010). C-SPARQL: A Continuous Query Language for RDF Data Streams. International Journal of Semantic Computing, 4(1), 3–25.
- Jean-Paul Calbimonte, Óscar Corcho, Alasdair J. G. Gray: Enabling Ontology-Based Access to Streaming Data Sources. International Semantic Web Conference (1) 2010: 96-111
- Cugola, G., & Margara, A. (2012). Processing flows of information. ACM Computing Surveys, 44(3), 1–62.
- Daniele Dell'Aglio, Marco Balduini, Emanuele Della Valle, On the need to include functional testing in RDF stream engine benchmarks. Proc. Bersys 2013.
- Gray, J. (1993). The Benchmark Handbook for Database and Transaction Systems (2nd ed.). Morgan Kaufmann.

Gray, Levine: "Thousands of DebitCredit Transaction per second: Easy and Inexpensive, MSR 2005-39...

- Le-phuoc, D., Dao-tran, M., & Pham, M. (2012). Linked Stream Data Processing Engines : Facts and Figures. The Semantic Web -ISWC 2012: 11th International Semantic Web Conference, ISWC 2012, Boston, MA, USA, Nov 12-14, 2012, Proceedings (Vol. 1380, pp. 1–12).
- Le-phuoc, D., Dao-tran, M., Parreira, J. X., & Hauswirth, M. (2011). A Native and Adaptive Approach for Unified Processing of Linked Streams and Linked Data. In L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal, N. Noy, et al. (Eds.), The Semantic Web -- ISWC 2011: 10th International Semantic Web Conference, Bonn, Germany, October 23-27, 2011, Proceedings, Part I (Vol. 7031, pp. 370–388). Springer Berlin / Heidelberg.
- Scharrenbach, T., Urbani, J., Margara, A., Valle, E. Della, & Bernstein, A. (2013). Seven Commandments for Benchmarking Semantic Flow Processing Systems. Proc.ESWC 2013 (pp. 1–15).
- Tichy, W. F., Lukowicz, P., Prechelt, L., & Heinz, E. A. (1995). A Quantitative Evaluation Study in Computer Science : Journal of Systems and Software, 28(1), 9–18.
- Wainer, J., Novoa Barsottini, C. G., Lacerda, D., & Magalhães de Marco, L. R. (2009). Empirical evaluation in Computer Science research published by ACM. Information and Software Technology, 51(6), 1081–1085. doi:10.1016/j.infsof.2009.01.002
- Zhang, Y., Duc, P. M., Corcho, O., & Calbimonte, J. (2012). SRBench : A Streaming RDF / SPARQL Benchmark. The Semantic Web - ISWC 2012: 11th International Semantic Web Conference, ISWC 2012, Boston, MA, USA, Nov 12-14, 2012, Proceedings.
- Zhang, Y & Boncz, Peter (2012). Benchmarking Linked Open Data Technology. Presentation at the European Data Forum (EDF) 2012, Copenhagen.