

DIGITAL - Institute for Information and Communication Technologies

The Wisdom of the Audience: An Empirical Study of Social Semantics in Twitter Streams

Claudia Wagner, Philipp Singer, Lisa Posch and Markus Strohmaier 10th Extended Semantic Web Conference, Montpellier, 29.5.2013

THE INNOVATION COMPANY www.joanneum.at

Authors make their messages as informative as required but do not provide more information than necessary (Maxim of Quantity by Grice (1975))

#music

Tickets from me website, Newcastle about to sell out so be snappy:)

instagram.com/p/Zlj069Mpod/

Expand Reply 13 Retweet * Favorite *** More

#fashion

Rafael Cennamo Is Looking For A Production Intern In NYC!

@rcennamo bit.ly/1802XpJ

View summary

21m

[src: http://www.techweekeurope.co.uk/wp-content/uploads/2012/07/Twitter.jpg]

Research Questions

RQ 1: To what extent is the background knowledge of audiences useful for analyzing the semantics of social media messages?

RQ 2: What are the characteristics of an audience which possesses useful background knowledge for interpreting the meaning of a stream's messages and which types of streams tend to have useful audiences?

[scr: http://www.teachthought.com/twitter-hashtags-for-teacher/]

THE INNOVATION COMPANY

Methodology

Message Classification Task

- Use hashtags as ground truth
 - Laniado and Mika (2010) showed that around half of all hashtags can be associated with Freebase concepts
- Compare real audience with random audience how well can an audience predict the hashtag of a tweet?
- The audience which is better in guessing the hashtag of a Twitter message is better in interpreting the meaning of the message
- Null hypothesis: If the audience of a stream does not possess more knowledge about the semantics of the stream's messages than a randomly selected baseline audience, the results from both classification models should not differ significantly

Methodology

- Train different multiclass classifiers on the background knowledge of the audience
 - Logistic Regression, Stochastic Gradient Descent, Multinomial Naive Bayes and Linear SVM
- Compare different approaches for estimating the background knowledge
 - Different audience and content selection approaches
 - Different methods for estimating the background knowledge
- Test how well each model can predict the hashtag of future messages
- Weighted Macro F1

Dataset

Diverse sample of hashtags

- Romero et al. (2011) identified eight categories of hashtags on a large data sample
 - celebrity, games, idioms, movies/TV, music, political, sports, and technology
- We randomly draw from each category ten hashtags which were still in use

Dataset

Technology	Idioms	Sports	Politics
#blackbery,	#omgfacts, #factsaboutme, #iwish	#football, #nfl,	#climate, #iran,
#iphone, #google		#yankees	#teaparty

Games	Music	Celebrity	Movies
#gaming, #mafiawars, #wow	#lastfm, #eurovision, #nowplaying	#bsb, #michaeljackson, #rogis	#avatar, #tv, #glennbeck

Dataset

	t1	t2	t3
Stream Tweets	94,634	94,984	95,105
Stream Authors	53,593	54,099	53,750
Friends	7,312,792	7,896,758	8,390,143
Audience Tweets	29,144,641	29,126,487	28,513,876

Audience Selection

Background Knowledge Content Selection

10

Recent

- The most recent messages authored by the audience users
- Top Links (plain and enriched)
 - the messages authored by the audience which contain one of the top links of that audience
- Top Tags
 - the messages authored by the audience which contain one of the top hashtags of that audience

Background Knowlegde Representation

- Preprocessing: remove stopwords, twitter syntax, stemming
- Represent background knowledge of the audience via the most likely topics or most important words of their messages
 - Bag of Words: TF and TFIDF
 - Topic Models: LDA

Empirical Evaluation

- RQ 1: To what extent does the background knowledge of the audience support the semantic annotation of individual messages?
 - Combine audience selection and background knowledge estimation approaches to generate semantic features of the messages authored by an audience
 - Training data on audience's messages crawled at t0
 - Test model using messages of the hashtag streams crawled at t1

Results

13

	F1 (TF-IDF)	F1 (LDA)
Random Guessing	1/78	1/78
Baseline (random audience)	0.01	0.01
Audience – recent	0.25	0.23
Audience – top links enriched	0.13	0.10
Audience – top links plain	0.12	0.10
Audience – top tags	0.24	0.21

The audience of a hashtag stream contains knowledge which is useful for predicting the hashtags of future messages

Results

14

	F1 (TF-IDF)	F1 (LDA)
celebrity	0.17	0.15
games	0.25	0.22
idioms	0.09	0.05
movies	0.22	0.18
music	0.23	0.18
political	0.36	0.33
sports	0.45	0.42
technology	0.22	0.22

THE INNOVATION COMPANY

Empirical Evaluation

- RQ 2: What are the characteristics of an audience which possesses useful background knowledge for interpreting the meaning of a stream's messages and which types of streams tend to have useful audiences?
 - Correlation analysis between the ability of an audience to interpret the meaning of messages and structural properties of the stream

Structural Stream Properties

Static Measures

- Coverage: informational, hashtag, retweet and conversational extent of a stream
- Entropy: randomness of a stream's authors and their followers, followees and friends
- Overlap: overlap between authors and followers, authors and followees and authors and friends

Dynamic Measures

KL divergence between the author-, the follower-, and the friend-distributions of a stream at different time

THE INNOVATION COMPANY

	F1 (TF-IDF)	F1 (LDA)
Overlap Author-Follower	0.675	0.655
Overlap Author-Followee	0.642	0.628
Overlap Author-Friend	0.612	0.602

Streams which are produced and consumed by a community of users who are tightly interconnected tend to have a useful audience.

A useful audience possesses background knowledge which helps interpreting the meaning of messages.

F1 (TF-IDF) F1 (LDA)

Conversation Coverage 0.256 0.256

Conversational streams tend to have a useful audience.

4.0

	F1 (TF-IDF)	F1 (LDA)
Entropy Author Distribution	-0.270	-0.400
Entropy Friend Distribution	-0.307	-
Entropy Follower Distribution	-0.400	-0.319
Entropy Followee Distribution	-0.401	-0.368

Streams which are produced and consumed by a focused set of authors, followers, followees and friends tend to have a useful audience.

20

	F1 (TF-IDF)	F1 (LDA)
KL Follower Distribution	-0.281	-
KL Followee Distribution	-0.343	-0.302
KL Author Distribution	-0.359	-0.307

Socially stable streams tend to have an audience which is good in interpreting the meaning of a stream's messages.

Summary & Conclusions

- The audience of a social stream possesses knowledge which may indeed help to interpret the meaning of a stream's messages
- But not all streams have similar useful audiences
- The audience of a social stream seems to be most useful if the stream is created and consumed by a stable, focused and communicative community – i.e., a group of users who are interconnected and have few core users to whom almost everyone is connected
- We do not know if those relations are causal but we got similar results when repeating our experiments on t1 and t2

Current and Future Work

- Compare the utility of ontological knowledge with audience background knowledge for the hashtag prediction task
- Algorithmic exploitation of our results
- Hybrid hashtag recommendation algorithm
 - Structural stream measures may inform weighting (how much can we count on the audience?)
 - Differentiate between social and topical hashtags
 - User-centric algorithms work only for active users who used hashtags before
 - An audience-integrated approach only requires an active audience

References

- Grice, H. P. (1975). Logic and conversation. In Speech acts, 3, 41–58. New York: Academic Press.
- Laniado, D., & Mika, P. (2010). Making sense of twitter. In Proceedings of the 9th international semantic web conference (pp. 470-485). Shanghai, China.
- Romero, D. M., Meeder, B., & Kleinberg, J. (2011). Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In Proceedings of the 20th international conference on world wide web (pp. 695–704). Hyderabad, India.

THANK YOU

claudia.wagner@joanneum.at

http://claudiawagner.info

[src: http://www.crowdscience.com/2008/06/tips_and_more/]