

Predicting the Understandability of OWL Inferences

Tu Anh Nguyen
Richard Power
Paul Piwek
Sandra Williams

Semantic Web Authoring Tool (EPSRC, 2009-2012)

- Developed tools for viewing and editing OWL ontologies in natural language
 - Ontology verbaliser
 - Editing tool (using CNL)
 - Suggesting entity names and axioms
- Generating explanations for entailments
 - Tu Anh Nguyen's PhD project

Ontology editor

Debugging task

- Recognise undesired entailment
 - There are no snakes
 - Everything is a snake
 - Every pet is a snake
- Understand why the undesired entailment was inferred by the reasoner
- Modify one or more axioms so that the undesired entailment is eliminated

General approach

- Identify a set of relevant axioms from which the undesired entailment follows
 - Minimal set is called a "justification" *
- Construct a proof tree leading from the justification to the entailment
 - This will usually include intermediate steps, sometimes called "lemmas"
- Present the proof tree through a text in natural language

^{*} Horridge et al. "The Cognitive Complexity of OWL Justifications" ISWC 2011

Understandable justification?

JUSTIFICATION

```
SubClassOf(A,B)
SubClassOf(A,C)
SubClassOf(C,D)
DisjointClasses(B,D)
```

ENTAILMENT

SubClassOf(A, Nothing)

Every pet snake is a pet.

Every pet snake is a snake.

Every snake is a reptile.

No pet is a reptile.

Nothing is a pet snake.

Justification not enough

JUSTIFICATION

EquivalentClasses(A,ObjectAllValuesFrom(P,B))
ObjectPropertyDomain(P,C)
SubClassOf(A,C)

ENTAILMENT

SubClassOf(Everything,C)

A vegan is anything that eats only plants. Anything that eats something is an animal. Every vegan is an animal.

Everything is an animal.

Proof tree

- (A1) Every pet snake is a snake.
- (A2) Every pet snake is a pet.
- (A3) Every snake is a reptile.
- (A4) No pet is a reptile.
- (L) Every pet snake is a reptile
- (E) There are no pet snakes
 - A Axiom
 - L Lemma
 - E Entailment

Deduction rules

Rule 12: Subclass transitivity

SUBCLASS TRANSITIVITY

SubClassOf(A,B)
SubClassOf(B,C)

SubClassOf(A,C)

Every pet snake is a snake. Every snake is a reptile.

Every pet snake is a reptile.

Rule 35: Incompatible superclasses

INCOMPATIBLE SUPERCLASSES

SubClassOf(A,B)
SubClassOf(A,C)
DisjointClasses(B,C)

SubClassOf(A, Nothing)

Every pet snake is a pet. Every pet snake is a reptile. No pet is a reptile.

Nothing is a pet snake.

Multiple explanations

How do we decide which proof tree to use?

Specific approach

- Collect a set of deduction rules by finding frequent, short justification patterns in an ontology corpus
- Measure the understandability of each deduction rule empirically
- Generate proof trees from these rules
- Combine the measures for each rule to obtain an understandability measure for a proof tree

Architecture

Collecting deduction rules

- Justification patterns for SubClassOf entailments were collected through a corpus study (500+ ontologies)
- Rules were derived from simple and frequent justification patterns ...
- ... And from commonly occurring parts of more complex justification patterns
- At present we have 57 rules covering 48% of justifications for the entailments studied

Understandability of rules

- We performed an empirical study to associate a Facility Index (FI) with each deduction rule in our set
- Subjects judged whether a conclusion followed from premises stated in natural language using unfamiliar terms
- The FI is the frequency of correct responses, interpreted as a probability that a person will understand the deduction

Sample question

Everything that has a worship leader is a fomorian. Everything that has no worship leader is a fomorian.

Which conclusions follow from these statements?

Everything that has a worship leader is a hiatea.

- O Follows
- O Does not follow

Everything is a fomorian.

- O Follows
- O Does not follow

Results from study

ID	Deduction Rule	Testing Problem	Facility Index
1	EqvCla(X,Y)	A hiatea is defined as a milvorn.	1.00 (49/49)
	\rightarrow SubClaOf(X,Y)	ightarrowEvery hiatea is a milvorn.	
2	SubClaOf(X,ObjIntOf(Y,Z))	Every ormyrr is both a gargoyle and a harpy.	0.96 (47/49)
	\rightarrow SubClaOf(X,Y)	ightarrowEvery ormyrr is a gargoyle.	
3	ObjPropDom(r0,X)	Anything that has a supernatural ability is a bulette.	0.96 (45/47)
	∧ SubClaOf(X,Y)	Every bulette is a manticore.	
	ightarrowObjPropDom(r0,Y)	ightarrowAnything that has a supernatural ability is a	
		manticore.	
48	SubClaOf(X,ObjAllValF(r0,Y)	Every tabaxi toves from only lamias.	0.32 (16/50)
	∧ InvObjProp(r0,r1)	X toves from Y if and only if Y toves into X.	
	\rightarrow SubClaOf(ObjSomValF(r1,X),Y)	ightarrowEverything that toves into a tabaxi is a lamia.	
49			
50	DatPropRng(d0,DR0)	Any value that something has as mazek is an integer.	0.18 (9/49)
	\land SubClaOf(X,DatSomValF(d0,DT1))	Every tiefling has as mazek a double value.	
	where DR0 & DT1 are disjoint	Double values are unconvertible to integer values in	
	$ ightarrow$ SubClaOf(X, \perp)	OWL.	
		ightarrowNothing is a tiefling.	
51	EqvCla(X,ObjAllValF(r0,Y))	A hiatea is anything that eats only lamias.	0.04 (2/49)
	$ ightarrow$ SubClaOf(ObjAllValF(r0, \perp),X)	ightarrowEverything that eats nothing at all is a hiatea.	

Rule 12: Subclass transitivity

SUBCLASS TRANSITIVITY

SubClassOf(A,B)
SubClassOf(B,C)

FI = 0.80

SubClassOf(A,C)

Every pet snake is a snake. Every snake is a reptile.

Every pet snake is a reptile.

Rule 35: Incompatible superclasses

INCOMPATIBLE SUPERCLASSES

SubClassOf(A,B)
SubClassOf(A,C)
DisjointClasses(B,C)

FI = 0.56

SubClassOf(A, Nothing)

Every pet snake is a pet. Every pet snake is a reptile. No pet is a reptile.

Nothing is a pet snake.

Rule 51: Trivial satisfaction

TRIVIAL SATISFACTION

```
EquivalentClasses(A,
   ObjectAllValuesFrom(P,B))

SubClassOf(
   ObjectAllValuesFrom(P,Nothing),A)
```

An A is anything that Ps only Bs.

Everything that Ps nothing is an A.

FI = 0.04

Generating proof trees

- Problem: given a justification, an entailment, and a set of deduction rules, build a tree for which root is entailment and terminal nodes are axioms in the justification
- This is done through an exhaustive search algorithm ...
- Making this algorithm efficient was not one of our research objectives

Understandability of proof trees

- To judge which proof tree is best, we need an understandability measure for the whole tree
- Proof trees are constructed from deduction rules, for which we have facility indexes
- Simplest hypothesis: understandability of proof tree is product of FIs of constituent deduction rules (joint probability)
- Our aim here is to validate this hypothesis

Combining facility indexes

Survey design

- We chose 15 two-step inferences with predicted FIs varying from 0.03 to 0.96
- All problems asked subjects to judge whether an explanation was valid (Yes/No)
- 15 test problems using valid explanations
- 15 control problems checking for response bias and scammers
 - 5 trivially correct
 - 5 first step invalid, 5 second step invalid

Participants

- Participants were Mechanical Turkers recruited using CrowdFlower
- After eliminating scammers we obtained results for 52 subjects
- Only one subject reported familiarity with OWL
- Not all subjects finished (but problems presented in different random orders)

Sample question

Assume these statements are true:

- (a) A suffment is anything that esiles only momes.
- (b) Anything that estiles something is a suffment.

We are interested in whether it follows that everything is a suffment. A person tried to justify this conclusion as follows:

From statement (a) we infer that (c) anything that estiles nothing at all is a suffment. From statements (b) and (c) we infer that everything is a suffment.

Is this reasoning correct?

- O Yes
- O No

Response bias

	+Yes	-Yes	Total
+Correct	774	458	1232
-Correct	59	265	324
Total	833 (54%)	723 (46%)	1556

No evidence of a response bias favouring "Yes"

Subjects err through rejecting a valid explanation (265) far more often than through accepting an invalid one (59)

Testing the main hypothesis

- Using the understandability measures predicted by our model, we grouped the inference problems into 5 bins
- A Friedman test showed highly significant differences among the bins (p<0.0001)
- Pairwise comparisons showed differences between any bin pair (p<0.05) except for bins 2 and 3

Obtained vs Predicted

Some values (e.g., 4.3) might be influenced by improvements in wording in the second survey

Alternative models

- We assume that success or failure on each step is independent of the other steps
- In reality there might be interactions, e.g. due to warming up (positive effect) or tiredness (negative)

Explanation tool

Reasoner checks

Explanation editor

Justification

Proof Tree (Facility Index = 0.45)

Nothing is a pet snake.

Every pet snake is a reptile. (a) Every pet snake is a pet. (axiom 2) No pet is a reptile. (axiom 3)

Top-Down Explanation

The statement "nothing is a pet snake" is implied because:

- every pet snake is a reptile (a),
- every pet snake is a pet (from axiom 2), and
- no reptile is a pet (from axiom 3).

Statement (a) is implied because:

- every pet snake is a snake (from axiom 1), and
- every snake is a reptile (from axiom 4).

Proof tree

Proof Tree (Facility Index = 0.45)

Nothing is a pet snake.

Every pet snake is a reptile. (a) Every pet snake is a pet. (axiom 2) No pet is a reptile. (axiom 3)

Top-Down Explanation

The statement "nothing is a pet snake" is implied because:

- every pet snake is a reptile (a),
- every pet snake is a pet (from axiom 2), and
- no reptile is a pet (from axiom 3).

Statement (a) is implied because:

- every pet snake is a snake (from axiom 1), and
- every snake is a reptile (from axiom 4).

Proof tree (expanded)

Proof Tree (Facility Index = 0.45)

Nothing is a pet snake.

Every pet snake is a reptile. (a)

Every pet snake is a snake. (axiom 1)

Every snake is a reptile. (axiom 4)

Every pet snake is a pet. (axiom 2)

No pet is a reptile. (axiom 3)

Conclusion

- Explanations of entailments can be based on proof trees
- Since there may be multiple proof trees we need a criterion for which is best
- Our proposal is to use the joint probability of understanding all the steps
- An empirical study shows that this gives a good prediction for two-step explanations

Questions?

Tu Anh Nguyen, Richard Power, Paul Piwek and Sandra Williams (2012). *Measuring the understandability of deduction rules for OWL.* Proceedings of First International Workshop on Debugging Ontologies and Ontology Mappings. Galway, Ireland.

Tu Anh Nguyen, Richard Power, Paul Piwek and Sandra Williams (2012) *Planning Accessible Explanations for Entailments in OWL Ontologies*. Proceedings of the 7th International Natural Language Generation Conference (INLG 2012), Starved Rock, IL, USA.

Thanks for your attention