Opening the Black Box of Ontology Matching

Hoa Ngo, Zohra Bellahsene, Konstantin Todorov

{firstname.lastname}@lirmm.fr

LIRMM / University of Montpellier 2

ESWC, Montpellier 2013

Outline

Ontology Matching and Matching Evaluation

- 2 Terminological Matchers and Mapping Selection
- 3 Structural Matchers and Mapping Selection
- Impact of Noisy Input on Structural Matchers
- 5 Interaction of Terminological with Structural and Semantic Matchers

Outline

Ontology Matching and Matching Evaluation

- 2 Terminological Matchers and Mapping Selection
- 3 Structural Matchers and Mapping Selection
- Impact of Noisy Input on Structural Matchers
- Interaction of Terminological with Structural and Semantic Matchers

A Generic Framework for Ontology Matching and Evaluation Ontology Matching

"Basically, we're all trying to say the same thing."

Borrowed by a tutorial by S. Staab and A. Hotho.

A Generic Framework for Ontology Matching and Evaluation

Ontology Matching

Ontologies are created in a **decentralized**, strongly **human biased** manner. Many ontologies describing the same domain of interest

=> ontology heterogeneity:

- syntactic
- terminological
- conceptual / structural

=> **Ontology Matching:** detect the semantic correspondences between the elements of two ontologies.

A Generic Framework for Ontology Matching and Evaluation

Matching and Evaluation Framework

Figure : Ontology Matching: System Architecture and Evaluation Scenario

A Generic Framework for Ontology Matching and Evaluation

Evaluation Measures

On *n* tests, we compute:

$$H(p) = \frac{\sum_{i=1}^{n} |C_i|}{\sum_{i=1}^{n} |A_i|}; \quad H(r) = \frac{\sum_{i=1}^{n} |C_i|}{\sum_{i=1}^{n} |R_i|}; \quad H(fm) = \frac{2 * H(p) * H(r)}{H(p) + H(r)}.$$

For the *i*th test:

- $|A_i|$ the total number of mappings discovered by a matching system,
- $|C_i|$ the number of correct mappings,
- $|R_i|$ the number of reference mappings (expert).

Outline

Ontology Matching and Matching Evaluation

2 Terminological Matchers and Mapping Selection

3 Structural Matchers and Mapping Selection

- Impact of Noisy Input on Structural Matchers
- Interaction of Terminological with Structural and Semantic Matchers

Terminological Matchers and Mapping Selection

Methods and Evaluation Strategy

Goal:

- Study the interaction between the mapping selection module and terminological matchers
- Compare global vs. local methods

Dataset:

- Conference dataset from OAEI¹, 21 test cases
- Moderate-size real world ontologies, terminologically highly heterogeneous, describe the same domain

Interaction scheme: Terminological matchers <-> mapping selection

¹The Ontology Alignment Evaluation Initiative

Terminological Matchers and Mapping Selection

Methods and Evaluation Strategy

Local methods (similarity of individual entities)

- Edit distance-based methods. Levenstein and ISUB
- Token-based methods. QGrams and TokLev (using Levestein to compare tokens)
- Hybrid methods. HybLinISUB and HybJCLev

Global methods (combination of local methods)

- Weighted Average with Local Confidence (LC)
- Harmony-based Adaptive Similarity Aggregation (HADAPT)
- Machine Learning-Based Approach (ML)
 (training data: OAEI Benchmark 2009 and I3CON)
- Information Retrieval-Based Approach (IR)

Terminological Matchers and Mapping Selection Results

Figure : Mapping Selection for the Terminological Matcher Module

Ontology Matching and Matching Evaluation

2 Terminological Matchers and Mapping Selection

3 Structural Matchers and Mapping Selection

- Impact of Noisy Input on Structural Matchers
- 5 Interaction of Terminological with Structural and Semantic Matchers

Structural Matchers and Mapping Selection

Methods and Evaluation Strategy

Goal:

• Study the behavior of structural matchers with respect to different settings of the mapping selection module

Dataset:

- Benchmark 2011 dataset from the OAEI campaign, 103 test cases
- Dataset construction: modification of label names and ontology structure

Interaction scheme: Terminological matcher (identical metric) -> structural matcher <-> mapping selection

Structural Matchers and Mapping Selection

Methods and Evaluation Strategy

- Standard structural methods
 - exploring standard structural relations between entities within the ontologies:

descendants, ancestors, leaves, adjacent, etc.

- relying on already discovered similarities
- SP (Similarity Propagation),
 - extends the similarity flooding algorithm
 - relies on directed relations in an ontology

Structural Matchers and Mapping Selection Results

Figure : Mapping Selection for Structural Methods

Ontology Matching and Matching Evaluation

2 Terminological Matchers and Mapping Selection

3 Structural Matchers and Mapping Selection

Impact of Noisy Input on Structural Matchers

Interaction of Terminological with Structural and Semantic Matchers

Impact of Noisy Input on Structural Matchers

Methods and Evaluation Strategy

Goal:

• Evaluate the behavior of different structural matchers when we add noise into the input mappings (coming from a terminological matcher)

Noise:

• a pair of entities falsely labeled as a "match".

Interaction scheme: Noise -> Terminological Matcher -> Structural Matcher

Impact of Noisy Input on Structural Matchers

Methods and Evaluation Strategy

At terminological level:

- Similarity measure: identical metric
- Adding noise: a number of random incorrect mappings, a portion the original init mappings

At structural level:

- · take input from the terminological matcher
- select the best threshold filter for each structural method (according to previous experiments).

Dataset:

- Benchmark 2011 dataset, 103 test cases
- At each iteration, count the total number of correct mappings and the total number of incorrect mappings

Impact of Noisy Input on Structural Matchers Results

Figure : Impact of input noise on structural matchers.

Ontology Matching and Matching Evaluation

- 2 Terminological Matchers and Mapping Selection
- 3 Structural Matchers and Mapping Selection
- Impact of Noisy Input on Structural Matchers

5 Interaction of Terminological with Structural and Semantic Matchers

Terminological vs. Structural and Semantic Matchers

Methods and Evaluation Strategy

Goal:

- Study the performance of terminological methods when used alone and when used as an input for structural and semantic methods.
- Identify the terminological matchers which provide best performance of the structural and the semantic methods for a given mapping selection threshold

Dataset:

Conference from OAEI

Interaction scheme: Terminological Matcher -> Structural Matcher Terminological Matcher -> Semantic Matcher

Terminological vs. Structural and Semantic Matchers

Methods and Evaluation Strategy

- At terminological level three different methods to produce initial mappings:
 - QGrams (representing token-based methods); ISUB (for edit-based methods); IR (for global methods).
- At structural level the SP method
 - Best performing among the structural matchers (previous exp.)
- At semantic level the global diagnosis optimization method
 - · refines input terminological mappings in order to remove inconsistent ones

Terminological vs. Structural and Semantic Matchers Results I

Figure : Interaction of terminological methods with a structural matcher (SP) w.r.t. different values of the mapping selection filters.

Terminological vs. Structural and Semantic Matchers Results II

Figure : Interaction of terminological methods with a semantic matcher (SM) w.r.t. different values of the mapping selection filters.

Ontology Matching and Matching Evaluation

- 2 Terminological Matchers and Mapping Selection
- 3 Structural Matchers and Mapping Selection
- Impact of Noisy Input on Structural Matchers
- Interaction of Terminological with Structural and Semantic Matchers

Conclusion

- An OM system: combines several matching components
- These components interact with one another
- Understanding these interactions =>

matcher selection and combination, parametrizing the OM tool

Thank you for listening.