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Motivation

e evaluating performance of models
— predictive error (most common)
— complexity, comprehensibllity, ...

e in order to perform tasks such as

— model selection
choose the best model

— model comparison ,
test how significant are differences

— model assesment
performance on new (future/unseen) datao
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Talk Outline

e predictive error/accuracy
— how to estimate ite
— bilas-variance tfrade-off
— comparison of models

e different settings/tasks
— predicting probabilities
— misclassification costs
— regression

e other criteria
— complexity, comprehensibility
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Basic Notation

e Y — target variable
— numeric: regression task
— discrete: classification task

e X —vector of input variables
e D — data set consisting of (x,y) pairs

e unknown function f(X): Y = f(X) + ¢
— £ —Infrinsic target noise

e prediction model *(X)
e prediction Y* = t*(X)
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1. predictive error (accuracy)
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Loss Function

* |0ss function measures the error btw.
— Y — measured/observed target value
— *(X) — predicted target value

e classification models
— O-1 loss: L(Y,f*(X)) = freq(Y # *(X))
— log-likelihood (later)

e regression models

— squared error: L(Y,f*(X)) = (Y - f*(X))?
— absolute error: L(Y,*(X)) = | Y = *(X) |
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Predictive Error (Accuracy)

e “frue” predictive error
— expected value of the loss function
— over the whole population

Error (1) = E[L(Y.T{X))]

e for O-1 loss function (classification)
— the error is between 0 and 1
— Accuracy(f*) = 1 - Error(f*)

e How to estimate Error(f*)e

Aeai()5
LJUBLJANMNA



Sample Error

e sample predictive error

— average loss over a data sample S
— consisting of N examples (x.,y)

%) — . %
Error (f*) = T/N - 3 sk (Y. f*(x))
e fraining error
— error estimated on fraining data sample

e festing error
— error estimated on test (unseen) data

Aeai()5
LJUBLJANMNA



Training vs. Test Error (1)

e common mistake
— estimate error on train data only
— resubstitution error
— foo optimistic (lower error)

— do not reveal the behavior of the model
on new (unseen/future) data

e correct approach
— estimate error on test dato
— unseen in fraining phase

» WHY IS THIS SO2
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Training vs. Test Error (2)

| -

o)

=

)

)

=

O test

©

D -

Q. Ioptlmlsm
low model complexity high

Based on Figure 7.1 from the book The Elements of Statistical Learning L &8&!0 5



2. bilas-variance trade-off
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Bias-Variance (B-V) Trade-Off
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B-V Decomposition (1)

e Error(x)
= E[(y - F*(x))]
= E[(y - f(x) + f(x) - £*(x))”]
= E[e?] + E[(f(X) - *(x))”]
= E[e?] + E[(f(x) — EFf(x) + Ef*(x) — *(X))*]
= noise + bias? + variance

e bias? = E[(f(x) — Ef*(x))?]
s variance = E[(f*(x) — Ef*(x))?]




B-V Decomposition (2)

e intrinsic target noise

e bias ferm

— measures how close the average model
produced b’Y a parficular learning
algorithm will be to the target function

e variance term

— measures how models produced by @
learning algorithm vary
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B-V: An Example
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B-V Decomposition: Methods

e empirical B-V decomposition
— on an arbitrary data set
— performed by multiple runs of an algorithm
— on different data samples

e description of methods (further reading):
— squared loss function [Geman et al. 1992]
— 0-1 loss function [Kohavi and Wolpert 1996]
— unified [Domingos 2000]
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3. estimating predictive error
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Data Supply Problems

e adll data samples

— should be large (representative) enough
— tfraining: obtaining better model
— fest: obtaining better error estimate

e however, in real applications
— amount of data limited
— due to practical problems

e ysual solution: holdout procedure
— keep some data out of training sample
— for testing purposes
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Holdout Procedures (Typical)

e model assessment

e model selection and assessment
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Holdout Estimates: Reliability

e how reliable is the holdout estimate
— we estimated error rate of 30%
— (1) on a test sample of 1000 examples
— (2) on a test sample of 40 examples
— which is more reliable/confident?

e confidence intervals
e with 95% probability the error lies in

— (1) interval [30%-3%, 30%+3%] = [27%,33%]
— (2) interval [30%-14%, 30%+14%] = [16%,44%)]
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Confidence Intervals

e different methods for calculating them
— based on Bernoulli Processes
— see further reading

e Weka Book

— Section 5.2
— Predicting Performance

e ML Book
— Section 5.2.2
— Confidence Intervals for Discrete-Valued

Hypotheses
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How to Improve Reliability?

e repetitive holdout estimates
— instead of running a single holdout
— repeat it number of times
— average the estimates obtained

e how 1o split iInto train/test samples?
— cross validation (CV)
— leave-one-out (special case of CV)
— booftstrap sampling
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Cross Validation (CV)

e three steps: partition, train, and test

e partition
—randomly info k folds (F , F_, ... F )

k

e repeaf k fimes (once for each F)
— frain on D\F
_ test (estimate sample error) on F

e average error estimates
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e Partition i@

Slide contributed by Nada Lavrad A.Alo 5
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e Partition i@

Slide contributed by Nada Lavrad A.Alo 5
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e Partition i@

Train

3a, 315
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e Partition iiiﬁij
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e Test
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CV: Number of Folds

e |[arge number of folds:
— fraining sets very similar o each other
— high variance of the estimate
— maximal number of folds N: leave-one-out
— illustrate high variance on an example

e small number of folds:
— lower variance, but
— fraining set might be too small

e recommended compromise: 5 or 10!
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CV: Siratification

e folds sampling not completely random

— "due to bad luck™ we can end-up with
non-representative data sample

— distribution of target variable values vary

e stratified sampling

— each fold has similar distribution of target
variable values

o different stratification methods for
— classification (similar distributions)
— regression (similar average values)
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Bootstrap Sampling

e three steps: sample, train and test

— sample N examples from D with replacement
(an example can be used more than once)

— frain on the (multi)set of sampled examples S
— test (estimate sample error) on D\S

e number of distinct fraining examples
—0.632'N (see ESL or Weka Book)

— comparable to 2-fold CV: pessimistic estimate
— combine estimated test error (Error_ ) with the
fraining error (Error,)

Error, ., = 0.632-Error_ . + 0.368-Error,
Aeal05
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Alternatives to Sampling

* IN-sample estimates
— Error__ = Error__, .+ Optimism

TEST TRAIN

— problem reduced to estimating “optimism”

e severdl in-sample estimates
— Akaike information criterion (AIC)
— Bayesian information criterion (BIC)

— Minimum descrip

lon length (MDL)

— further details in 1

ne ESL book
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MDL Principle

e the best model is the one that minimizes
— the model size

— the amount of iInformation necessary to
encode model errors

—l.e., Information necessary to reconstruct
training data

e model estimate thus is a sum of
— model size: L(M)
— fraining data D w.r.i. M: L(D | M)

e coding method important
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4. comparing predictive errors
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Paired t-test

e perform CV for both models (M, M)
—onsame k datafoldsF, F, ... F,
— obtain estimates Error (M ) and Error_(M,)
— calculate Diff. = Error (M) — Error_(M,)
— t-stafistic t = mean(Diff) / sqrt(var(Diff) /k)

e calculated t-statistic
— follows Student's distribution
— with k-1 degrees of freedom
— see ML or Weka Book for details
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Non-Paired t-test

e allows for comparison with models
— estimated using different CV folds
— or even different number of CV folds

e Different estimate of var(Diff) needed
— see Weka book for details
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Comparison: Open Issue

e comparing models on limited data
— is still an open issue

e ongoing research work focus on

— criticism of exisiing methods [Bengio and
Grandvalet 2004]

— comparing existing and proposing new
g(l)’rgjr?qhves [Diettrich 1998; Bouckaert
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5. different settings/tasks
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Predicting Probabilities (1)

e predicting distribution of Y values
— instead of predicting Y value itself
— example: weather forecast (sunny/rainy)
— prediction: sunny — 75%, rainy — 25%

e O-1 loss function not good
— wrong prediction with 55% probability
— Is better than
— wrong prediction with 75% probability
— different loss function needed
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Predicting Probabilities (2)

e Notation:
-p - predicted probability of |-th value of Y

— p, — predicted probabillity of actual Y value

— a.— actual probability of j-th value of Y
e Note that only a, =1, rest are O

e alternative loss-functions
— quadratic
LIY.p*(X) = Z(0,-p)?=1-2p, + 3P
— log-likelihood
L(Y.p*(X)) =-2 2.a-log(p) =-2log(p,)
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Errors of Regression Models

e mean squared error (MSE) correspond to

— squared error loss function
= LY. (X)) = (Y = F*(X))?

e commonly used RMSE = sqrt(MSE])

e meadn absolute error correspond 1o

— absolute error loss function
= LY. (X)) = | Y = 1%(X) |

e these error measures are scale
dependent
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Relative and Scale
Independent Errors

e relative squared error (RSE)
— RSE = MSE / var(Y)

— error relative to the error of the simplest
predictor (predicting mean(Y))

— RSE value gr;reo’rer than 1 (one) means that
the predictor performs worse than simplest

— comparable across domains

e correlation coefficient (r?)
— scale independent
— see Weka book
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Misclassification Costs

e binary classification problem

e two kind of errors

— false positive , o
negative example predicted as positive

— false negative , ,
positive éxample predicted as negative

e different costs assigned to each
— examples: loan decisions, diagnosis
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Confusion Matrix

predicted class

actual class

e Error = (FP + FN) / N
e Accuracy = (TP +TN) / N

e TPrate = Recall =TP / (TP + FN)
e FPrate = FP / (FP + TN)
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ROC Space
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ROC Plot

Classifiers in ROC space
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ROC Convex Hull

Classifiers in ROC space

e classifiers on the

2] CH achieve best

g| oo accurqcy forsome
L class distributions
% e classifiers not on

i the CH. are always
" suboptimal

0 10 20 30 40 50 60 70 80 90 100
FP Rate

Slide author: Peter Flach Lﬁgﬁ!o 5



Optimal Classifier (1)

Classifiers in ROC space
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Optimal Classifier (2)
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Incorporating Costs

e for skewed class distribution
— slope equals heg/pos

e for misclassification costs
—slope equals (neg*C(+/-))/(pos*C(-/+))

e further details

— [Provost and Fawcett 2001]
— [Flach 2003]
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6. other performance measures
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Model Complexity

e many different measures
— model dependent

e decision frees
— number of nodes, parameters in leaf nodes

e decision rules
— number of rules, literals, coverage

* in general
— number of parameters
— encoding length (MDL like)
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Model Comprehensibility

e difficult to assess
— most methods involve manual work
— can not be fully automated

e fests
— can human expert understand the modele
— can he/she use It for manual predictione
— how welle

e roughly related
— rule interestigness [Fuernkranz and Flach 095]
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/. further reading
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Further Reading: Books

» Weka Book
|.H.Witten and E.Frank (2000) Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann. [Chapter 5].

e ML Book
T.M.Mitchell (1997) Machine Learning. McGraw-Hill.
[Chapter 5].

e ESL Book
T.Hastie, R. Tibshirani, and J. Friedman (2001) The
Elements of Stafistical Learning. Springer-Verlag.
[Chapter 7].

Aeal05



Further Reading: Articles (1)

e Y.Bengio and Y.Grandvalet (2004) No unbiased
estimator of the variance of k-fold cross-validation.
Journal of Machine Learning Research 5: 1089-1106.

 R.R.Bouckaert (2004) Estimating Replicability of Classifier
Learning Experiments. In Proceedings of Twenty-First
International Conference on Machine Learning.

e T.Dietterich (1998) Approximate statistical tfests for
comparing supervised classification learning algorithmes.
Neural Computation 10(7): 1895-1924.
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Further Reading: Articles (2)

e P.Domingos (2000) A unified bias-varionce decomposition
and its applications. In Proceedings of the Seventeenth
International Conference on Machine Learning (ICML-
2000), pages 231-238.

e S.Geman, G.Beinenstock, and R.Doursat (1992) Neural
networks and the bias/variance dilemma. Neural
Computation 4: 1-58.

e R.Kohavi and D.H.Wolpert (1996) Bias plus variance
decomposition for zero-one loss functions. In Proceedings
of the Thirfeenth International Conference on Machine
Learning (IMCL-1996), pages 275-283.
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Further Reading: Articles (3)

e P.A.Flach (2003) The geometry of ROC space. In
Proceedings of the Twentieth International Conference on
Machine Learning (ICML-2003), pages 194-201.

e J.Fuernkranz and P.A.Flach (2005) ROC'n'Rule learning —
towards a better understanding of covering algorithmes.
Machine Learning 58(1): 39-77.

e F.J.Provost and T.Fawcett (2001) Robust classification

analysis for performance evaluation. Machine Learning
42(3): 203-231.
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