# ACAI-05 ADVANCED COURSE ON KNOWLEDGE DISCOVERY

#### **Evaluation Methodology**

Ljupčo Todorovski

Department of Knowledge Technologies

Jožef Stefan Institute

http://www-ai.ijs.si/~ljupco/



#### Motivation

- evaluating performance of models
  - predictive error (most common)
  - complexity, comprehensibility, ...
- in order to perform tasks such as
  - model selection choose the best model
  - model comparison test how significant are differences
  - model assesment performance on new (future/unseen) data

#### Talk Outline

- predictive error/accuracy
  - how to estimate it?
  - bias-variance trade-off
  - comparison of models
- different settings/tasks
  - predicting probabilities
  - misclassification costs
  - regression
- other criteria
  - complexity, comprehensibility



#### **Basic Notation**

- Y target variable
  - numeric: regression task
  - discrete: classification task
- X vector of input variables
- D data set consisting of (x,y) pairs
- unknown function f(X):  $Y = f(X) + \varepsilon$ –  $\varepsilon$  – intrinsic target noise
- prediction model f\*(X)
- prediction  $Y^* = f^*(X)$



1. predictive error (accuracy)

#### **Loss Function**

- loss function measures the error btw.
  - Y measured/observed target value
  - f\*(X) predicted target value
- classification models
  - -0-1 loss:  $L(Y,f^*(X)) = freq(Y \neq f^*(X))$
  - log-likelihood (later)
- regression models
  - squared error:  $L(Y,f^*(X)) = (Y f^*(X))^2$
  - absolute error:  $L(Y,f^*(X)) = |Y f^*(X)|$



# Predictive Error (Accuracy)

- "true" predictive error
  - expected value of the loss function
  - over the whole population

$$Error(f^*) = E[L(Y,f^*(X))]$$

- for 0-1 loss function (classification)
  - the error is between 0 and 1
  - Accuracy(f\*) = 1 Error(f\*)
- How to estimate Error(f\*)?



### Sample Error

- sample predictive error

  - average loss over a data sample S
    consisting of N examples (x<sub>i</sub>,y<sub>i</sub>)

$$Error_{S}(f^{*}) = 1/N \cdot \sum_{(x_{i},y_{i}) \in S} L(y_{i},f^{*}(x_{i}))$$

- training error
  - error estimated on training data sample
- testing error
  - error estimated on test (unseen) data



# Training vs. Test Error (1)

- common mistake
  - estimate error on train data only
  - resubstitution error
  - too optimistic (lower error)
  - do not reveal the behavior of the model on new (unseen/future) data
- correct approach
  - estimate error on test data
  - unseen in training phase
- MHY IS THIS SO?



# Training vs. Test Error (2)



#### 2. bias-variance trade-off

# Bias-Variance (B-V) Trade-Off



### **B-V Decomposition (1)**

Error(x)
 = E[(y - f\*(x))²]
 = E[(y - f(x) + f(x) - f\*(x))²]
 = E[ε²] + E[(f(x) - f\*(x))²]
 = E[ε²] + E[(f(x) - Ef\*(x) + Ef\*(x) - f\*(X))²]
 = noise + bias² + variance

- bias<sup>2</sup> =  $E[(f(x) Ef^*(x))^2]$
- variance =  $E[(f^*(x) Ef^*(x))^2]$

# **B-V Decomposition (2)**

- intrinsic target noise
- bias term
  - measures how close the average model produced by a particular learning algorithm will be to the target function
- variance term
  - measures how models produced by a learning algorithm vary

### **B-V: An Example**



### **B-V Decomposition: Methods**

- empirical B-V decomposition
  - on an arbitrary data set
  - performed by multiple runs of an algorithm
  - on different data samples
- description of methods (further reading):
  - squared loss function [Geman et al. 1992]
  - 0-1 loss function [Kohavi and Wolpert 1996]
  - unified [Domingos 2000]

3. estimating predictive error

### **Data Supply Problems**

- all data samples
  - should be large (representative) enough
  - training: obtaining better model
  - test: obtaining better error estimate
- however, in real applications
  - amount of data limited
  - due to practical problems
- usual solution: holdout procedure
  - keep some data out of training sample
  - for testing purposes



# **Holdout Procedures (Typical)**

model assessment

train (75%)

test (25%)

model selection and assessment

train (50%)

validation (25%)

test (25%)

### Holdout Estimates: Reliability

- how reliable is the holdout estimate
  - we estimated error rate of 30%
  - (1) on a test sample of 1000 examples
  - (2) on a test sample of 40 examples
  - which is more reliable/confident?
- confidence intervals
- with 95% probability the error lies in
  - -(1) interval [30%-3%, 30%+3%] = [27%,33%]
  - (2) interval [30%-14%, 30%+14%] = [16%,44%]



#### Confidence Intervals

- different methods for calculating them
  - based on Bernoulli Processes
  - see further reading
- Weka Book
  - Section 5.2
  - Predicting Performance
- ML Book
  - Section 5.2.2
  - Confidence Intervals for Discrete-Valued
     Hypotheses



### How to Improve Reliability?

- repetitive holdout estimates
  - instead of running a single holdout
  - repeat it number of times
  - average the estimates obtained
- how to split into train/test samples?
  - cross validation (CV)
  - leave-one-out (special case of CV)
  - bootstrap sampling



# Cross Validation (CV)

- three steps: partition, train, and test
- partition
  - \_ randomly into k folds (F<sub>1</sub>, F<sub>2</sub>, ... F<sub>k</sub>)
- repeat k times (once for each F<sub>i</sub>)
  - train on D\F
  - test (estimate sample error) on F
- average error estimates











#### **CV: Number of Folds**

- large number of folds:
  - training sets very similar to each other
  - high variance of the estimate
  - maximal number of folds N: leave-one-out
  - illustrate high variance on an example
- small number of folds:
  - lower variance, but
  - training set might be too small
- recommended compromise: 5 or 10!



#### **CV: Stratification**

- folds sampling not completely random
  - "due to bad luck" we can end-up with non-representative data sample
  - distribution of target variable values vary
- stratified sampling
  - each fold has similar distribution of target variable values
- different stratification methods for
  - classification (similar distributions)
  - regression (similar average values)



### **Bootstrap Sampling**

- three steps: sample, train and test
  - sample N examples from D with replacement (an example can be used more than once)
  - train on the (multi)set of sampled examples \$
  - test (estimate sample error) on D\S
- number of distinct training examples
  - -0.632·N (see ESL or Weka Book)
  - comparable to 2-fold CV: pessimistic estimate
  - combine estimated test error (Error<sub>D\s</sub>) with the training error (Error<sub>s</sub>)

$$Error_{0.632} = 0.632 \cdot Error_{D \setminus S} + 0.368 \cdot Error_{S}$$

### Alternatives to Sampling

- in-sample estimates
  - Error<sub>TEST</sub> = Error<sub>TRAIN</sub> + Optimism
  - problem reduced to estimating "optimism"
- several in-sample estimates
  - Akaike information criterion (AIC)
  - Bayesian information criterion (BIC)
  - Minimum description length (MDL)
  - further details in the ESL book

### **MDL Principle**

- the best model is the one that minimizes
  - the model size
  - the amount of information necessary to encode model errors
  - i.e., information necessary to reconstruct training data
- model estimate thus is a sum of
  - model size: L(M)
  - training data D w.r.t. M: L(D | M)
- coding method important

4. comparing predictive errors

#### Paired t-test

- perform CV for both models (M<sub>1</sub>, M<sub>2</sub>)
  - on same k data folds  $F_1$ ,  $F_2$ , ...  $F_k$
  - obtain estimates  $Error_{Fi}(M_1)$  and  $Error_{Fi}(M_2)$
  - calculate Diff<sub>i</sub> = Error<sub>Fi</sub> $(M_1)$  Error<sub>Fi</sub> $(M_2)$
  - t-statistic t = mean(Diff) / sqrt(var(Diff)/k)
- calculated t-statistic
  - follows Student's distribution
  - with k-1 degrees of freedom
  - see ML or Weka Book for details

#### Non-Paired t-test

- allows for comparison with models
  - estimated using different CV folds
  - or even different number of CV folds
- Different estimate of var(Diff) needed
  - see Weka book for details

### Comparison: Open Issue

- comparing models on limited data
  - is still an open issue
- ongoing research work focus on
  - criticism of existing methods [Bengio and Grandvalet 2004]
  - comparing existing and proposing new alternatives [Diettrich 1998; Bouckaert 2004]

#### 5. different settings/tasks

# Predicting Probabilities (1)

- predicting distribution of Y values
  - instead of predicting Y value itself
  - example: weather forecast (sunny/rainy)
  - prediction: sunny 75%, rainy 25%
- 0-1 loss function not good
  - wrong prediction with 55% probability
  - is better than
  - wrong prediction with 75% probability
  - different loss function needed

# Predicting Probabilities (2)

- Notation:
  - p<sub>i</sub> predicted probability of j-th value of Y
  - p<sub>k</sub> predicted probability of actual Y value
  - a actual probability of j-th value of Y
    - Note that only  $a_k = 1$ , rest are 0
- alternative loss-functions
  - quadratic  $L(Y,p^*(X)) = \sum_j (a_j p_j)^2 = 1 2 p_k + \sum_j p_j^2$  log-likelihood  $L(Y,p^*(X)) = -2 \sum_j a_j \cdot \log(p_j) = -2 \log(p_k)$

#### **Errors of Regression Models**

- mean squared error (MSE) correspond to
  - squared error loss function
  - $-L(Y,f^*(X)) = (Y f^*(X))^2$
- commonly used RMSE = sqrt(MSE)
- mean absolute error correspond to
  - absolute error loss function
  - $-L(Y,f^*(X)) = |Y f^*(X)|$
- these error measures are scale dependent



#### Relative and Scale Independent Errors

- relative squared error (RSE)
  - -RSE = MSE / var(Y)
  - error relative to the error of the simplest predictor (predicting mean(Y))
  - RSE value greater than 1 (one) means that the predictor performs worse than simplest
  - comparable across domains
- correlation coefficient (r²)
  - scale independent
  - see Weka book

#### Misclassification Costs

- binary classification problem
- two kind of errors
  - false positive negative example predicted as positive
  - false negative positive example predicted as negative
- different costs assigned to each
  - examples: loan decisions, diagnosis

#### **Confusion Matrix**

|              | predicted class |                 |
|--------------|-----------------|-----------------|
| actual class | yes             | no              |
| yes          | true positives  | false negatives |
| no           | false positives | true negatives  |

- Error = (FP + FN) / N
- Accuracy = (TP + TN) / N
- TPrate = Recall = TP / (TP + FN)
- FPrate = FP / (FP + TN)



# **ROC Space**



#### **ROC Plot**



#### **ROC Convex Hull**



- classifiers on the CH achieve best accuracy for some class distributions
- classifiers not on the CH are always suboptimal

ASALO5

# Optimal Classifier (1)



- C4.5 optimal for uniform class distribution (slope of the blue line)
- Accuracy: 82%

**A9A!**05

# Optimal Classifier (2)



- SVM optimal for class distribution where we have 4 times as many positives as negatives (slope of the blue line)
- Accuracy: 84%



### **Incorporating Costs**

- for skewed class distribution
  - slope equals neg/pos
- for misclassification costs
  - slope equals (neg\*C(+/-))/(pos\*C(-/+))
- further details
  - [Provost and Fawcett 2001]
  - [Flach 2003]



6. other performance measures

### **Model Complexity**

- many different measures
  - model dependent
- decision trees
  - number of nodes, parameters in leaf nodes
- decision rules
  - number of rules, literals, coverage
- in general
  - number of parameters
  - encoding length (MDL like)



### **Model Comprehensibility**

- difficult to assess
  - most methods involve manual work
  - can not be fully automated
- tests
  - can human expert understand the model?
  - can he/she use it for manual prediction?
  - how well?
- roughly related
  - rule interestigness [Fuernkranz and Flach 05]



#### 7. further reading

### Further Reading: Books

- Weka Book
   I.H.Witten and E.Frank (2000) Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann. [Chapter 5].
- ML Book
   T.M.Mitchell (1997) Machine Learning. McGraw-Hill.
   [Chapter 5].
- ESL Book
   T.Hastie, R. Tibshirani, and J. Friedman (2001) The Elements of Statistical Learning. Springer-Verlag.
   [Chapter 7].

# Further Reading: Articles (1)

- Y.Bengio and Y.Grandvalet (2004) No unbiased estimator of the variance of k-fold cross-validation. Journal of Machine Learning Research 5: 1089-1105.
- R.R.Bouckaert (2004) Estimating Replicability of Classifier Learning Experiments. In Proceedings of Twenty-First International Conference on Machine Learning.
- T.Dietterich (1998) Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10(7): 1895-1924.

# Further Reading: Articles (2)

- P.Domingos (2000) A unified bias-variance decomposition and its applications. In Proceedings of the Seventeenth International Conference on Machine Learning (ICML-2000), pages 231-238.
- S.Geman, G.Beinenstock, and R.Doursat (1992) Neural networks and the bias/variance dilemma. Neural Computation 4: 1-58.
- R. Kohavi and D.H.Wolpert (1996) Bias plus variance decomposition for zero-one loss functions. In Proceedings of the Thirteenth International Conference on Machine Learning (IMCL-1996), pages 275-283.

# Further Reading: Articles (3)

- P.A.Flach (2003) The geometry of ROC space. In Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), pages 194-201.
- J.Fuernkranz and P.A.Flach (2005) ROC'n'Rule learning towards a better understanding of covering algorithms. *Machine Learning* 58(1): 39-77.
- F.J.Provost and T.Fawcett (2001) Robust classification analysis for performance evaluation. *Machine Learning* 42(3): 203-231.