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Motivation

• evaluating performance of models
– predictive error (most common)
– complexity, comprehensibility, ...

• in order to perform tasks such as
– model selection

choose the best model
– model comparison

test how significant are differences
– model assesment

performance on new (future/unseen) data
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Talk Outline

• predictive error/accuracy
– how to estimate it?
– bias-variance trade-off
– comparison of models

• different settings/tasks
– predicting probabilities
– misclassification costs
– regression

• other criteria
– complexity, comprehensibility
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Basic Notation

• Y – target variable
– numeric: regression task
– discrete: classification task

• X – vector of input variables
• D – data set consisting of (x,y) pairs
• unknown function f(X): Y = f(X) + ε

– ε – intrinsic target noise

• prediction model f*(X)
• prediction Y* = f*(X)
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1. predictive error (accuracy)



 6

Loss Function

• loss function measures the error btw.
– Y – measured/observed target value
– f*(X) – predicted target value

• classification models
– 0-1 loss: L(Y,f*(X)) = freq(Y ≠ f*(X))
– log-likelihood (later)

• regression models
– squared error: L(Y,f*(X)) = (Y – f*(X))2

– absolute error: L(Y,f*(X)) = |Y – f*(X)|
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Predictive Error (Accuracy)

• “true” predictive error
– expected value of the loss function
– over the whole population

Error(f*) = E[L(Y,f*(X))]
• for 0-1 loss function (classification)

– the error is between 0 and 1
– Accuracy(f*) = 1 - Error(f*)

• How to estimate Error(f*)?
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Sample Error

• sample predictive error
– average loss over a data sample S
– consisting of N examples (x

i
,y

i
)

Error
S
(f*) = 1/N ∙ ∑ (x

i
,y

i
)SL(y

i
,f*(x

i
))

• training error
– error estimated on training data sample

• testing error
– error estimated on test (unseen) data
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Training vs. Test Error (1)

• common mistake
– estimate error on train data only
– resubstitution error
– too optimistic (lower error)
– do not reveal the behavior of the model 

on new (unseen/future) data

• correct approach
– estimate error on test data
– unseen in training phase

• WHY IS THIS SO?
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Training vs. Test Error (2)

Based on Figure 7.1 from the book The Elements of Statistical Learning
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2. bias-variance trade-off



 

Bias-Variance (B-V) Trade-Off

Based on Figure 7.1 from the book The Elements of Statistical Learning
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B-V Decomposition (1)

• Error(x)
= E[(y - f*(x))2]
= E[(y - f(x) + f(x) - f*(x))2]
= E[ε2] + E[(f(x) - f*(x))2]
= E[ε2] + E[(f(x) – Ef*(x) + Ef*(x) – f*(X))2]
= noise + bias2 + variance

• bias2 = E[(f(x) – Ef*(x))2]
• variance = E[(f*(x) – Ef*(x))2]



 

B-V Decomposition (2)

• intrinsic target noise

• bias term
– measures how close the average model 

produced by a particular learning 
algorithm will be to the target function

• variance term
– measures how models produced by a 

learning algorithm vary



 

B-V: An Example

Based on Figure 7.3 from the book The Elements of Statistical Learning



 

B-V Decomposition: Methods

• empirical B-V decomposition
– on an arbitrary data set
– performed by multiple runs of an algorithm
– on different data samples

• description of methods (further reading):
– squared loss function [Geman et al. 1992]
– 0-1 loss function [Kohavi and Wolpert 1996]
– unified [Domingos 2000]



 

3. estimating predictive error
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Data Supply Problems

• all data samples
– should be large (representative) enough
– training: obtaining better model
– test: obtaining better error estimate

• however, in real applications
– amount of data limited
– due to practical problems

• usual solution: holdout procedure
– keep some data out of training sample
– for testing purposes
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Holdout Procedures (Typical)

• model assessment

• model selection and assessment

train (75%) test (25%)

train (50%) test (25%)validation
(25%)
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Holdout Estimates: Reliability

• how reliable is the holdout estimate
– we estimated error rate of 30%
– (1) on a test sample of 1000 examples
– (2) on a test sample of 40 examples
– which is more reliable/confident?

• confidence intervals

• with 95% probability the error lies in
– (1) interval [30%-3%, 30%+3%] = [27%,33%]
– (2) interval [30%-14%, 30%+14%] = [16%,44%]
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Confidence Intervals

• different methods for calculating them
– based on Bernoulli Processes
– see further reading

• Weka Book
– Section 5.2
– Predicting Performance

• ML Book
– Section 5.2.2
– Confidence Intervals for Discrete-Valued 

Hypotheses
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How to Improve Reliability?

• repetitive holdout estimates
– instead of running a single holdout
– repeat it number of times
– average the estimates obtained

• how to split into train/test samples?
– cross validation (CV)
– leave-one-out (special case of CV)
– bootstrap sampling
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Cross Validation (CV)

• three steps: partition, train, and test

• partition
– randomly into k folds (F

1
, F

2
, ... F

k
)

• repeat k times (once for each F
i
)

– train on D\F
i

– test (estimate sample error) on F
i

• average error estimates



 

•Partition D
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Slide contributed by Nada Lavrač
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•Partition
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CV: Number of Folds

• large number of folds:
– training sets very similar to each other
– high variance of the estimate
– maximal number of folds N: leave-one-out
– illustrate high variance on an example

• small number of folds:
– lower variance, but
– training set might be too small

• recommended compromise: 5 or 10!



 

CV: Stratification

• folds sampling not completely random
– “due to bad luck” we can end-up with 

non-representative data sample
– distribution of target variable values vary

• stratified sampling
– each fold has similar distribution of target 

variable values

• different stratification methods for
– classification (similar distributions)
– regression (similar average values)



 

Bootstrap Sampling

• three steps: sample, train and test
– sample N examples from D with replacement

(an example can be used more than once)
– train on the (multi)set of sampled examples S
– test (estimate sample error) on D\S

• number of distinct training examples
– 0.632∙N (see ESL or Weka Book)
– comparable to 2-fold CV: pessimistic estimate
– combine estimated test error (Error

D\S
) with the 

training error (Error
S
)

Error
0.632

 = 0.632∙Error
D\S

 + 0.368∙Error
S



 

Alternatives to Sampling

• in-sample estimates
– Error

TEST
 = Error

TRAIN
 + Optimism

– problem reduced to estimating “optimism”

• several in-sample estimates
– Akaike information criterion (AIC)
– Bayesian information criterion (BIC)
– Minimum description length (MDL)
– further details in the ESL book



 

MDL Principle

• the best model is the one that minimizes
– the model size
– the amount of information necessary to 

encode model errors
– i.e., information necessary to reconstruct 

training data

• model estimate thus is a sum of
– model size: L(M)
– training data D w.r.t. M: L(D|M)

• coding method important



 

4. comparing predictive errors



 

Paired t-test

• perform CV for both models (M
1
, M

2
)

– on same k data folds F
1
, F

2
, ... F

k

– obtain estimates Error
Fi
(M

1
) and Error

Fi
(M

2
)

– calculate Diff
i
 = Error

Fi
(M

1
) – Error

Fi
(M

2
)

– t-statistic t = mean(Diff) / sqrt(var(Diff)/k)

• calculated t-statistic
– follows Student's distribution
– with k-1 degrees of freedom
– see ML or Weka Book for details



 

Non-Paired t-test

• allows for comparison with models
– estimated using different CV folds
– or even different number of CV folds

• Different estimate of var(Diff) needed
– see Weka book for details



 

Comparison: Open Issue

• comparing models on limited data
– is still an open issue

• ongoing research work focus on
– criticism of existing methods [Bengio and 

Grandvalet 2004]
– comparing existing and proposing new 

alternatives [Diettrich 1998; Bouckaert 
2004]



 

5. different settings/tasks



 

Predicting Probabilities (1)

• predicting distribution of Y values
– instead of predicting Y value itself
– example: weather forecast (sunny/rainy)
– prediction: sunny – 75%, rainy – 25%

• 0-1 loss function not good
– wrong prediction with 55% probability
– is better than
– wrong prediction with 75% probability
– different loss function needed



 

Predicting Probabilities (2)

• Notation:
– p

j
 – predicted probability of j-th value of Y

– p
k
 – predicted probability of actual Y value

– a
j
 – actual probability of j-th value of Y

• Note that only a
k
 = 1, rest are 0

• alternative loss-functions
– quadratic

L(Y,p*(X)) = ∑
j
(a

j
 – p

j
)2 = 1 – 2 p

k
 + ∑

j
p

j
2

– log-likelihood
L(Y,p*(X)) = -2 ∑

j
a

j
∙log(p

j
) = -2 log(p

k
)



 

Errors of Regression Models

• mean squared error (MSE) correspond to
– squared error loss function
– L(Y,f*(X)) = (Y – f*(X))2

• commonly used RMSE = sqrt(MSE)

• mean absolute error correspond to 
– absolute error loss function
– L(Y,f*(X)) = |Y – f*(X)|

• these error measures are scale 
dependent



 

Relative and Scale 
Independent Errors
• relative squared error (RSE)

– RSE = MSE / var(Y)
– error relative to the error of the simplest 

predictor (predicting mean(Y))
– RSE value greater than 1 (one) means that 

the predictor performs worse than simplest
– comparable across domains

• correlation coefficient (r2)
– scale independent
– see Weka book



 

Misclassification Costs

• binary classification problem

• two kind of errors
– false positive

negative example predicted as positive
– false negative

positive example predicted as negative

• different costs assigned to each
– examples: loan decisions, diagnosis



 

Confusion Matrix

yes no

predicted class

true positives false negativesyes

false positives true negativesno

actual class

• Error = (FP + FN) / N
• Accuracy = (TP + TN) / N

• TPrate = Recall = TP / (TP + FN)
• FPrate = FP / (FP + TN)



 

ROC Space

Slide author: Peter Flach



 

ROC Plot

Slide author: Peter Flach



 

ROC Convex Hull

Slide author: Peter Flach

• classifiers on the 
CH achieve best 
accuracy for some 
class distributions

• classifiers not on 
the CH are always 
suboptimal



 

Optimal Classifier (1)

• C4.5 optimal for 
uniform class 
distribution (slope 
of the blue line)

• Accuracy: 82%

Slide author: Peter Flach



 

Optimal Classifier (2)

• SVM optimal for 
class distribution 
where we have 4 
times as many 
positives as 
negatives (slope 
of the blue line)

• Accuracy: 84%

Slide author: Peter Flach



 

Incorporating Costs

• for skewed class distribution
– slope equals neg/pos

• for misclassification costs
– slope equals (neg*C(+/-))/(pos*C(-/+))

• further details
– [Provost and Fawcett 2001]
– [Flach 2003]

Slide author: Peter Flach



 

6. other performance measures



 

Model Complexity

• many different measures
– model dependent

• decision trees
– number of nodes, parameters in leaf nodes

• decision rules
– number of rules, literals, coverage

• in general
– number of parameters
– encoding length (MDL like)



 

Model Comprehensibility

• difficult to assess
– most methods involve manual work
– can not be fully automated

• tests
– can human expert understand the model?
– can he/she use it for manual prediction?
– how well?

• roughly related
– rule interestigness [Fuernkranz and Flach 05]



 

7. further reading
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Further Reading: Books 

• Weka Book
I.H.Witten and E.Frank (2000) Data Mining: Practical 
Machine Learning Tools and Techniques with Java 
Implementations. Morgan Kaufmann. [Chapter 5].

• ML Book
T.M.Mitchell (1997) Machine Learning. McGraw-Hill. 
[Chapter 5].

• ESL Book
T.Hastie, R. Tibshirani, and J. Friedman (2001) The 
Elements of Statistical Learning. Springer-Verlag. 
[Chapter 7].



 

Further Reading: Articles (1)

• Y.Bengio and Y.Grandvalet (2004) No unbiased 
estimator of the variance of k-fold cross-validation. 
Journal of Machine Learning Research 5: 1089-1105.

• R.R.Bouckaert (2004) Estimating Replicability of Classifier 
Learning Experiments. In Proceedings of Twenty-First 
International Conference on Machine Learning.

• T.Dietterich (1998) Approximate statistical tests for 
comparing supervised classification learning algorithms. 
Neural Computation 10(7): 1895-1924.



 

Further Reading: Articles (2)
• P.Domingos (2000) A unified bias-variance decomposition 

and its applications. In Proceedings of the Seventeenth 
International Conference on Machine Learning (ICML-
2000), pages 231-238.

• S.Geman, G.Beinenstock, and R.Doursat (1992) Neural 
networks and the bias/variance dilemma. Neural 
Computation 4: 1-58.

• R. Kohavi and D.H.Wolpert (1996) Bias plus variance 
decomposition for zero-one loss functions. In Proceedings 
of the Thirteenth International Conference on Machine 
Learning (IMCL-1996), pages 275-283.



 

Further Reading: Articles (3)
• P.A.Flach (2003) The geometry of ROC space. In 

Proceedings of the Twentieth International Conference on 
Machine Learning (ICML-2003), pages 194-201.

• J.Fuernkranz and P.A.Flach (2005) ROC'n'Rule learning – 
towards a better understanding of covering algorithms. 
Machine Learning 58(1): 39-77.

• F.J.Provost and T.Fawcett (2001) Robust classification 
analysis for performance evaluation. Machine Learning 
42(3): 203-231.


