Computer-Aided Algorithm Design: Automated Tuning, Configuration, Selection and Beyond

Holger H. Hoos

BETA Lab Department of Computer Science University of British Columbia Canada

construct a provably good solver

- construct a provably good solver
- roll up your sleeves and do the best you can

- construct a provably good solver
- roll up your sleeves and do the best you can

- construct a provably good solver
- roll up your sleeves and do the best you can
- use your little grey cells, then your little black chips

- construct a provably good solver
- roll up your sleeves and do the best you can
- use your little grey cells, then your little black chips

 \rightsquigarrow principled experimentation + generic techniques

 leverages computational power to construct better algorithms

- leverages computational power to construct better algorithms
- liberates human designers from boring, menial tasks and lets them focus on higher-level design issues

- leverages computational power to construct better algorithms
- liberates human designers from boring, menial tasks and lets them focus on higher-level design issues
- enables effective exploration of larger design spaces

- leverages computational power to construct better algorithms
- liberates human designers from boring, menial tasks and lets them focus on higher-level design issues
- enables effective exploration of larger design spaces
- facilitates principled design of heuristic algorithms

Holger Hoos: Computer-aided algorithm design

- leverages computational power to construct better algorithms
- liberates human designers from boring, menial tasks and lets them focus on higher-level design issues
- enables effective exploration of larger design spaces
- facilitates principled design of heuristic algorithms
- profoundly changes how we build and use algorithms

many design choices (representation / search space; neighbourhoods; search strategy; variable/value selection heuristic; restart rules; pre-processing; data structures; ...)

- many design choices (representation / search space; neighbourhoods; search strategy; variable/value selection heuristic; restart rules; pre-processing; data structures; ...)
- best performance often achieved by combination of various heuristics

- many design choices (representation / search space; neighbourhoods; search strategy; variable/value selection heuristic; restart rules; pre-processing; data structures; ...)
- best performance often achieved by combination of various heuristics (Howe *et al.* 1999; Fox & Long 2001; Roberts *et al.* 2007; Richter & Westphal 2009; Valenzano *et al.* 2010; ...)

- many design choices (representation / search space; neighbourhoods; search strategy; variable/value selection heuristic; restart rules; pre-processing; data structures; ...)
- best performance often achieved by combination of various heuristics (Howe *et al.* 1999; Fox & Long 2001; Roberts *et al.* 2007; Richter & Westphal 2009; Valenzano *et al.* 2010; ...)
- various heuristic components interact in complex ways
 various unexpected, emergent behaviour

- many design choices (representation / search space; neighbourhoods; search strategy; variable/value selection heuristic; restart rules; pre-processing; data structures; ...)
- best performance often achieved by combination of various heuristics (Howe *et al.* 1999; Fox & Long 2001; Roberts *et al.* 2007; Richter & Westphal 2009; Valenzano *et al.* 2010; ...)
- various heuristic components interact in complex ways
 various unexpected, emergent behaviour
- performance can be tricky to assess due to
 - differences in behaviour across problem instances
 - stochasticity

Therefore ...

 time-consuming design process, success often critically dependent on experience, intuition, luck

Therefore ...

- time-consuming design process, success often critically dependent on experience, intuition, luck
- resulting algorithms often complex, somewhat ad-hoc, not fully optimised

 Application: Solving SAT-encoded software verification problems

- Application: Solving SAT-encoded software verification problems
- ► Given: High-performance DPLL-type SAT solver (SPEAR)
 - 26 parameters (7 categorical, 3 Boolean, 12 continuous, 4 integer-valued)
 - control variable/value ordering heuristics, clause learning, restarts, ...

- Application: Solving SAT-encoded software verification problems
- ► Given: High-performance DPLL-type SAT solver (SPEAR)
 - 26 parameters (7 categorical, 3 Boolean, 12 continuous, 4 integer-valued)
 - control variable/value ordering heuristics, clause learning, restarts, ...
- Goal: Minimize expected run-time on 'typical' SAT instances from software verification tool

- Application: Solving SAT-encoded software verification problems
- ► Given: High-performance DPLL-type SAT solver (SPEAR)
 - 26 parameters (7 categorical, 3 Boolean, 12 continuous, 4 integer-valued)
 - control variable/value ordering heuristics, clause learning, restarts, ...
- Goal: Minimize expected run-time on 'typical' SAT instances from software verification tool
- Problems:
 - default settings $\rightsquigarrow \approx$ 300 seconds / run
 - good performance on some instances may not generalise

Outline

1. Introduction

- 2. From traditional to computer-aided algorithm design
- 3. Design spaces and design patterns
- 4. Meta-algorithmic search and optimisation procedures
- 5. Three success stories (SAT, timetabling, MIP)
- 6. The next step: Programming by Optimisation

Traditional algorithm design approach:

iterative, manual process

Traditional algorithm design approach:

- iterative, manual process
- designer gradually introduces/modifies components or mechanisms

Traditional algorithm design approach:

- iterative, manual process
- designer gradually introduces/modifies components or mechanisms
- test performance on benchmark instances

Traditional algorithm design approach:

- iterative, manual process
- designer gradually introduces/modifies components or mechanisms
- test performance on benchmark instances
- design often starts from generic or broadly applicable problem solving method (*e.g.*, evolutionary algorithm)

Note:

During the design process, many decisions are made.

Note:

- During the design process, many decisions are made.
- Some choices take the form of parameters, others are hard-coded.

Note:

- During the design process, many decisions are made.
- Some choices take the form of parameters, others are hard-coded.
- Design decisions interact in complex ways.

Design process is labour-intensive.

- Design process is labour-intensive.
- Design decisions often made in *ad-hoc* fasion, based on limited experimentation and intuition.

- Design process is labour-intensive.
- Design decisions often made in *ad-hoc* fasion, based on limited experimentation and intuition.
- Human designers typically over-generalise observations, explore few designs.

- Design process is labour-intensive.
- Design decisions often made in *ad-hoc* fasion, based on limited experimentation and intuition.
- Human designers typically over-generalise observations, explore few designs.
- Implicit assumptions of independence, monotonicity are often incorrect.

- Design process is labour-intensive.
- Design decisions often made in *ad-hoc* fasion, based on limited experimentation and intuition.
- Human designers typically over-generalise observations, explore few designs.
- Implicit assumptions of independence, monotonicity are often incorrect.
- Number of components and mechanisms tends to grow in each stage of design process.
Problems:

- Design process is labour-intensive.
- Design decisions often made in *ad-hoc* fasion, based on limited experimentation and intuition.
- Human designers typically over-generalise observations, explore few designs.
- Implicit assumptions of independence, monotonicity are often incorrect.
- Number of components and mechanisms tends to grow in each stage of design process.
- \rightsquigarrow complicated designs, unfulfilled performance potential

► Goal: construct high-performance algorithms automatically

- ► Goal: construct high-performance algorithms automatically
- Key idea: use fully formalised procedures to effectively explore large space of candidate designs

- ► Goal: construct high-performance algorithms automatically
- Key idea: use fully formalised procedures to effectively explore large space of candidate designs
- \rightsquigarrow genetic programming, hyper-heuristics, reactive search

- ► Goal: construct high-performance algorithms automatically
- Key idea: use fully formalised procedures to effectively explore large space of candidate designs
- → genetic programming, hyper-heuristics, reactive search; learning and intelligent optimisation, SLS engineering; meta-learning; program synthesis

specifies (possibly large) space of candidate algorithm design

- specifies (possibly large) space of candidate algorithm design
- supplies set of problem instances for performance evaluation

- specifies (possibly large) space of candidate algorithm design
- supplies set of problem instances for performance evaluation
- specifies performance metric

- specifies (possibly large) space of candidate algorithm design
- supplies set of problem instances for performance evaluation
- specifies performance metric

Meta-algorithmic system:

explores design space in principled manner

- specifies (possibly large) space of candidate algorithm design
- supplies set of problem instances for performance evaluation
- specifies performance metric

Meta-algorithmic system:

- explores design space in principled manner
- evaluates candidate design

- specifies (possibly large) space of candidate algorithm design
- supplies set of problem instances for performance evaluation
- specifies performance metric

Meta-algorithmic system:

- explores design space in principled manner
- evaluates candidate design
- finds high-performance designs

lets human designer focus on higher-level issues

- lets human designer focus on higher-level issues
- enables better exploration of larger design spaces

- lets human designer focus on higher-level issues
- enables better exploration of larger design spaces
- exploits complementary strengths of different approaches for solving a given problem

- lets human designer focus on higher-level issues
- enables better exploration of larger design spaces
- exploits complementary strengths of different approaches for solving a given problem
- uses principled, fully formalised methods for algorithm design

- lets human designer focus on higher-level issues
- enables better exploration of larger design spaces
- exploits complementary strengths of different approaches for solving a given problem
- uses principled, fully formalised methods for algorithm design
- can be used to customise algorithms for use in specific applications with minimal human effort

Hutter, Babic, HH, Hu (2007)

Goal: Solve suite of SAT-encoded software verification instances as fast as possible

Hutter, Babic, HH, Hu (2007)

- Goal: Solve suite of SAT-encoded software verification instances as fast as possible
- new DPLL-style SAT solver SPEAR (by Domagoj Babic)
 - = highly parameterised heuristic algorithm (26 parameters, $\approx 8.3 \times 10^{17}$ configurations)

Hutter, Babic, HH, Hu (2007)

- Goal: Solve suite of SAT-encoded software verification instances as fast as possible
- ▶ new DPLL-style SAT solver SPEAR (by Domagoj Babic)
 - = highly parameterised heuristic algorithm (26 parameters, $\approx 8.3 \times 10^{17}$ configurations)
- manual configuration by algorithm designer

Hutter, Babic, HH, Hu (2007)

- Goal: Solve suite of SAT-encoded software verification instances as fast as possible
- new DPLL-style SAT solver SPEAR (by Domagoj Babic)
 highly parameterised heuristic algorithm
 - (26 parameters, $\approx 8.3 \times 10^{17}$ configurations)
- manual configuration by algorithm designer
- automated configuration using ParamILS, a generic algorithm configuration procedure Hutter, HH, Stützle (2007)

Spear : Empirical results on software verification benchmarks

solver	num. solved	mean run-time
MiniSAT 2.0	302/302	161.3 CPU sec

SPEAR: Empirical results on software verification benchmarks

solver	num. solved	mean run-time
MiniSAT 2.0	302/302	161.3 CPU sec
SPEAR original	298/302	787.1 CPU sec

SPEAR: Empirical results on software verification benchmarks

solver	num. solved	mean run-time
MiniSAT 2.0	302/302	161.3 CPU sec
SPEAR original	298/302	787.1 CPU sec
SPEAR generic. opt. config.	302/302	35.9 CPU sec

Spear : Empirical results on software verification benchmarks

solver	num. solved	mean run-time
MiniSAT 2.0	302/302	161.3 CPU sec
SPEAR original	298/302	787.1 CPU sec
Spear generic. opt. config.	302/302	35.9 CPU sec
Spear specific. opt. config.	302/302	1.5 CPU sec

SPEAR: Empirical results on software verification benchmarks

solver	num. solved	mean run-time
MiniSAT 2.0	302/302	161.3 CPU sec
SPEAR original	298/302	787.1 CPU sec
SPEAR generic. opt. config.	302/302	35.9 CPU sec
SPEAR specific. opt. config.	302/302	1.5 CPU sec

- ► ≈ 500-fold speedup through use automated algorithm configuration procedure (ParamILS)
- new state of the art

(winner of 2007 SMT Competition, QF_BV category)

Design spaces and design patterns

Special cases of computer-aided algorithm design:

parameter optimisation (for given set of instances)
 Birattari *et al.* (2002); Adenso-Diaz & Laguna (2006),

Hutter et al. (2007–9), Ansótegui et al. (2009); Bartz-Beielstein (2006)

Design spaces and design patterns

Special cases of computer-aided algorithm design:

parameter optimisation (for given set of instances)

Birattari *et al.* (2002); Adenso-Diaz & Laguna (2006), Hutter *et al.* (2007–9), Ansótegui *et al.* (2009); Bartz-Beielstein (2006)

 algorithm configuration from components (for given set of instances)

Fukunaga (2002), Chiarandini et al. (2008), KhudaBukhsh et al. (2009)

Design spaces and design patterns

Special cases of computer-aided algorithm design:

parameter optimisation (for given set of instances)

Birattari *et al.* (2002); Adenso-Diaz & Laguna (2006), Hutter *et al.* (2007–9), Ansótegui *et al.* (2009); Bartz-Beielstein (2006)

 algorithm configuration from components (for given set of instances)

Fukunaga (2002), Chiarandini et al. (2008), KhudaBukhsh et al. (2009)

restart strategies

Luby *et al.* (1993); Gagliolo & Schmidhuber (2007); Streeter *et al.* (2007)

instance-based algorithm configurators

Hutter et al. (2006); Malitsky & Sellmann (2009)

- instance-based algorithm configurators
 Hutter et al. (2006); Malitsky & Sellmann (2009)
- on-line algorithm control / reactive search Carchrae & Beck (2005); Battiti *et al.* (2008)

instance-based algorithm configurators
 Hutter et al. (2006); Malitsky & Sellmann (2009)

 on-line algorithm control / reactive search Carchrae & Beck (2005); Battiti *et al.* (2008)

instance-based algorithm selection

Rice (1976); Leyton-Brown *et al.* (2003); Guerri & Milano (2004); Xu *et al.* (2008)

instance-based algorithm configurators
 Hutter et al. (2006); Malitsky & Sellmann (2009)

 on-line algorithm control / reactive search Carchrae & Beck (2005); Battiti *et al.* (2008)

instance-based algorithm selection

Rice (1976); Leyton-Brown *et al.* (2003); Guerri & Milano (2004); Xu *et al.* (2008)

algorithm portfolios (static and dynamic)

Huberman *et al.* (1997), Gomes & Selman (2001); Gagliolo & Schmidhuber (2007)

instance-based algorithm configurators
 Hutter et al. (2006); Malitsky & Sellmann (2009)

 on-line algorithm control / reactive search Carchrae & Beck (2005); Battiti *et al.* (2008)

instance-based algorithm selection
 Rice (1976); Leyton-Brown *et al.* (2003); Guerri & Milano (2004);

Xu et al. (2008)

algorithm portfolios (static and dynamic)

Huberman *et al.* (1997), Gomes & Selman (2001); Gagliolo & Schmidhuber (2007)

\rightsquigarrow meta-algorithmic design patterns, induce design spaces

Meta-algorithmic search and optimisation procedures

How to search design spaces?

 use powerful heuristic search and optimisation procedures, combined with significant amounts of computing power

Meta-algorithmic search and optimisation procedures

How to search design spaces?

- use powerful heuristic search and optimisation procedures, combined with significant amounts of computing power
- use machine learning methods (classification, regression), combined with significant amount of training data

Some examples:

parameter tuning:

numerical optimisation techniques
 e.g., CMA-ES (Hansen & Ostermeier 2001)
- parameter tuning:
 - numerical optimisation techniques
 e.g., CMA-ES (Hansen & Ostermeier 2001)
 - model-based optimisation methods
 e.g., SPO (Bartz-Beielstein 2006),
 SPO⁺, TB-SPO (Hutter *et al.* 2009–10)

- parameter tuning:
 - numerical optimisation techniques
 e.g., CMA-ES (Hansen & Ostermeier 2001)
 - model-based optimisation methods
 e.g., SPO (Bartz-Beielstein 2006),
 SPO⁺, TB-SPO (Hutter *et al.* 2009–10)
- algorithm configuration:
 - genetic programming
 - e.g., CLASS (Fukunaga 2002)

- parameter tuning:
 - numerical optimisation techniques
 e.g., CMA-ES (Hansen & Ostermeier 2001)
 - model-based optimisation methods
 e.g., SPO (Bartz-Beielstein 2006),
 SPO⁺, TB-SPO (Hutter *et al.* 2009–10)
- algorithm configuration:
 - genetic programming e.g., CLASS (Fukunaga 2002)
 - racing procedures
 e.g., F-Race (Birattari et al. 2002)

- parameter tuning:
 - numerical optimisation techniques
 e.g., CMA-ES (Hansen & Ostermeier 2001)
 - model-based optimisation methods
 e.g., SPO (Bartz-Beielstein 2006), SPO⁺, TB-SPO (Hutter *et al.* 2009–10)
- algorithm configuration:
 - genetic programming e.g., CLASS (Fukunaga 2002)
 - racing procedures
 e.g., F-Race (Birattari et al. 2002)
 - advanced stochastic local search procedures e.g., ParamILS (Hutter et al. 2007)

- instance-based algorithm selection
 - classification approaches (e.g., Guerri & Milano 2004)

- instance-based algorithm selection
 - ▶ classification approaches (e.g., Guerri & Milano 2004)
 - regression approaches (e.g., Leyton-Brown et al. 2003, Xu et al. 2008)

- instance-based algorithm selection
 - classification approaches (e.g., Guerri & Milano 2004)
 - regression approaches (e.g., Leyton-Brown et al. 2003, Xu et al. 2008)
- dynamic algorithm portfolios (time allocators)
 - bandit solvers (e.g., Gagliolo & Schmidhuber 2007)

- instance-based algorithm selection
 - classification approaches (e.g., Guerri & Milano 2004)
 - regression approaches (*e.g.*, Leyton-Brown *et al.* 2003, Xu *et al.* 2008)
- dynamic algorithm portfolios (time allocators)
 - bandit solvers (e.g., Gagliolo & Schmidhuber 2007)
 - evolutionary algorithms (e.g., Harik & Lobo 1999)

Many open questions:

Which procedure for which type of design space?

Many open questions:

- Which procedure for which type of design space?
- How to deal with hybrid design patterns?

Many open questions:

- Which procedure for which type of design space?
- How to deal with hybrid design patterns?
- How to best deal with censored, sparse data?

How good are current methods for computer-aided algorithm design?

Three success stories

How good are current methods for computer-aided algorithm design?

"The proof is in the pudding":

- Propositional Satisfiability
- Course Timetabling
- Mixed Integer Programming

Three success stories

How good are current methods for computer-aided algorithm design?

"The proof is in the pudding":

- Propositional Satisfiability
- Course Timetabling
- Mixed Integer Programming

Further successes:

- protein structure prediction (Thachuk et al. 2007)
- SAT (KhudaBukhsh *et al.* 2009; Xu *et al.* to appear; Tompkins & HH – to appear)
- TSP (Styles & HH in preparation)

Holger Hoos: Computer-aided algorithm design

Xu, Hutter, HH, Leyton-Brown (2008)

Key idea: Instance-based Algorithm Selection (Rice 1976)

- Given: set S of algorithms for a problem, problem instance π
- Select from S the algorithm expected to solve π most efficiently, based on (cheaply computable) features of π.

Xu, Hutter, HH, Leyton-Brown (2008)

Key idea: Instance-based Algorithm Selection (Rice 1976)

- Given: set S of algorithms for a problem, problem instance π
- Select from S the algorithm expected to solve π most efficiently, based on (cheaply computable) features of π.

SATzilla in a nutshell:

▶ CNF formula ~→ 84 polytime-computable instance features

Xu, Hutter, HH, Leyton-Brown (2008)

Key idea: Instance-based Algorithm Selection (Rice 1976)

- Given: set S of algorithms for a problem, problem instance π
- Select from S the algorithm expected to solve π most efficiently, based on (cheaply computable) features of π.

SATzilla in a nutshell:

- ► CNF formula ~→ 84 polytime-computable instance features
- ► features ~→ performance prediction for set of SAT solvers

Xu, Hutter, HH, Leyton-Brown (2008)

Key idea: Instance-based Algorithm Selection (Rice 1976)

- Given: set S of algorithms for a problem, problem instance π
- Select from S the algorithm expected to solve π most efficiently, based on (cheaply computable) features of π.

SATzilla in a nutshell:

- ▶ CNF formula ~→ 84 polytime-computable instance features
- ► features ~→ performance prediction for set of SAT solvers
- run solver with best predicted performance

Under the hood:

 Use state-of-the-art complete (DPLL) and incomplete (local search) SAT solvers.

Under the hood:

- Use state-of-the-art complete (DPLL) and incomplete (local search) SAT solvers.
- Use ridge regression on selected features to predict solver run-times from instance features.

Under the hood:

- Use state-of-the-art complete (DPLL) and incomplete (local search) SAT solvers.
- Use ridge regression on selected features to predict solver run-times from instance features.
- Use method by Schmee & Hahn (1979) to deal with censored run-time data.

Use pre-solvers to solve 'easy' instances quickly.

- Use pre-solvers to solve 'easy' instances quickly.
- Build run-time predictors for various types of instances, use classifier to select best predictor based on instance features.

- Use pre-solvers to solve 'easy' instances quickly.
- Build run-time predictors for various types of instances, use classifier to select best predictor based on instance features.
- Predict time required for feature computation; if that time is too long, use back-up solver.

- Use pre-solvers to solve 'easy' instances quickly.
- Build run-time predictors for various types of instances, use classifier to select best predictor based on instance features.
- Predict time required for feature computation; if that time is too long, use back-up solver.

 \sim prizes in 5 of the 9 main categories of the 2009 SAT Solver Competition (3 gold, 2 silver medals)

Post-Enrolment Course Timetabling

Chiarandini, Fawcett, HH (2008); Fawcett, HH, Chiarandini (in preparation)

Post-Enrolment Course Timetabling:

- students enroll in courses
- courses are assigned to rooms and time slots, subject to hard constraints
- preferences are represented by soft constraints

Post-Enrolment Course Timetabling

Chiarandini, Fawcett, HH (2008); Fawcett, HH, Chiarandini (in preparation)

Post-Enrolment Course Timetabling:

- students enroll in courses
- courses are assigned to rooms and time slots, subject to hard constraints
- preferences are represented by soft constraints

Our solver:

- modular multiphase stochastic local search algorithm
- hard constraint solver: finds feasible course schedules
- soft constraint solver: optimise schedule (maintaining feasibility)

Our first solver:

- developed over ca. 1 month
- starting point: Chiarandini et al. (2003)
- soft constraint solver unchanged
- automatically configured hard constraint solver

Our first solver:

- developed over ca. 1 month
- starting point: Chiarandini et al. (2003)
- soft constraint solver unchanged
- automatically configured hard constraint solver

Design space for hard constraint solver:

- parameterised combination of constructive search, tabu search, diversification strategy
- 7 parameters, 50 400 configurations

Our first solver:

- developed over ca. 1 month
- starting point: Chiarandini et al. (2003)
- soft constraint solver unchanged
- automatically configured hard constraint solver

Design space for hard constraint solver:

- parameterised combination of constructive search, tabu search, diversification strategy
- 7 parameters, 50 400 configurations

Automated configuration process:

- configurator: FocusedILS 2.3 (Hutter et al. 2009)
- ▶ performance objective: solution quality after 300 CPU sec

2nd International Timetabling Competition (ITC), Track 2

Our latest solver:

- developed over ca. 6 months
- starting point: our previous solver
- automatically configured hard & soft constraint solvers

Our latest solver:

- developed over ca. 6 months
- starting point: our previous solver
- automatically configured hard & soft constraint solvers

Design space for soft constraint solver:

- highly parameterised simulated annealing algorithm
- ▶ 11 parameters, 2.7×10^9 configurations

Our latest solver:

- developed over ca. 6 months
- starting point: our previous solver
- automatically configured hard & soft constraint solvers

Design space for soft constraint solver:

- highly parameterised simulated annealing algorithm
- ▶ 11 parameters, 2.7×10^9 configurations

Automated configuration process:

- configurator: FocusedILS 2.4 (new version, multiple stages)
- multiple performance objectives (final stage: solution quality after 600 CPU sec)

2-way race against ITC Track 2 winner

2-way race against ITC Track 2 winner

- our solver wins beats ITC winner on 20 out of 24 competition instances
- application to university-wide exam scheduling at UBC (≈ 1650 exams, 28 000 students)

Holger Hoos: Computer-aided algorithm design
Mixed Integer Programming (MIP)

Hutter, HH, Leyton-Brown, Stützle (2009); Hutter, HH, Leyton-Brown (2010)

- MIP is widely used for modelling optimisation problems
- MIP solvers play an important role for solving broad range of real-world problems

CPLEX:

- prominent and widely used commercial MIP solver
- exact solver, based on sophisticated branch & cut algorithm and numerous heuristics
- ▶ 159 parameters, 81 directly control search process

[CPLEX 12.1 user manual, p. 478]

[CPLEX 12.1 user manual, p. 478]

Automatically Configuring CPLEX:

- starting point: factory default settings
- ► 63 parameters (some with 'AUTO' settings)
- 1.38×10^{37} configurations

[CPLEX 12.1 user manual, p. 478]

Automatically Configuring CPLEX:

- starting point: factory default settings
- 63 parameters (some with 'AUTO' settings)
- 1.38×10^{37} configurations
- configurator: FocusedILS 2.3 (Hutter et al. 2009)
- performance objective: minimal mean run-time
- configuration time: 10×2 CPU days

[CPLEX 12.1 user manual, p. 478]

Automatically Configuring CPLEX:

- starting point: factory default settings
- 63 parameters (some with 'AUTO' settings)
- 1.38×10^{37} configurations
- configurator: FocusedILS 2.3 (Hutter et al. 2009)
- performance objective: minimal mean run-time
- configuration time: 10×2 CPU days

CPLEX on various MIPS benchmarks

Benchmark	Default performance	Optimised performance	Speedup
	[CPU sec]	[CPU sec]	factor
BCOL/CONIC.SCH	5.37	$2.35~(2.4\pm 0.29)$	2.2
BCOL/CLS	712	$23.4~(327\pm 860)$	30.4
BCOL/MIK	64.8	$1.19~(301\pm 948)$	54.4
CATS/Regions200	72	$10.5~(11.4\pm 0.9)$	6.8
RNA-QP	969	525 (827 \pm 306)	1.8

(Timed-out runs are counted as 10 \times cutoff time.)

CPLEX on various MIPS benchmarks

Benchmark	Default performance	Optimised performance	Speedup
	[CPU sec]	[CPU sec]	factor
BCOL/CONIC.SCH	5.37	$2.35~(2.4\pm0.29)$	2.2
BCOL/CLS	712	$23.4~(327\pm 860)$	30.4
BCOL/MIK	64.8	$1.19~(301\pm 948)$	54.4
CATS/Regions200	72	$10.5~(11.4\pm0.9)$	6.8
RNA-QP	969	525 (827 \pm 306)	1.8

(Timed-out runs are counted as 10 \times cutoff time.)

CPLEX on BCOL/CLS

CPLEX on BCOL/CONIC.SCH

Latest results: Gurobi on BCOL/MIK

Latest results: Gurobi on BCOL/MIK

Latest results: Ipsolve on CA-WDP

Latest results: Ipsolve on CA-WDP

application context

application context

+ design space

application context + design space + optimisation procedure

application context + design space + optimisation procedure + compute power

application context +design space +optimisation procedure compute power success

The next step: Programming by Optimisation

How to easily use computer-aided algorithm design?

The next step: Programming by Optimisation

How to easily use computer-aided algorithm design?

Need effective support for ...

specification of rich design spaces

The next step: Programming by Optimisation

How to easily use computer-aided algorithm design?

Need effective support for ...

- specification of rich design spaces
- automated design (and analysis) process

Nell, Fawcett, HH, Leyton-Brown (under review)

support algorithm design and empirical analysis

- support algorithm design and empirical analysis
- support wide range of design patterns, procedures

- support algorithm design and empirical analysis
- support wide range of design patterns, procedures
- support effective utilisation of parallel computation

- support algorithm design and empirical analysis
- support wide range of design patterns, procedures
- support effective utilisation of parallel computation
- support multiple platforms (Linux, MacOS; *later:* Windows, Chrome OS?)

- support algorithm design and empirical analysis
- support wide range of design patterns, procedures
- support effective utilisation of parallel computation
- support multiple platforms (Linux, MacOS; *later:* Windows, Chrome OS?)
- web-based UI, component-based architecture

- support algorithm design and empirical analysis
- support wide range of design patterns, procedures
- support effective utilisation of parallel computation
- support multiple platforms (Linux, MacOS; *later:* Windows, Chrome OS?)
- web-based UI, component-based architecture
- open source, easy to use & expand

ILAL 1.0	 	
	 <u></u>	

Now	To	c la c
1101		101010

Evaluate algorithm performance

Analyse performance of an algorithm on an instance set.

Compare algorithm performance

Compare the performance of two algorithms on an instance set.

Configure algorithm

Optimize parameter settings to maximize algorithm performance on an instance set.

	<u>.</u>
	•

Status ID

99%

97%

8%

Start Time

1q/3r

CPU Time

0.8

2010-04-02 17:25:05.0 258122.70 s KILL

2010-04-02 17:31:31.0 253904.81 s KILL

Completed Tasks

Active Tasks

N/A

6 Compare GGA/PILS SATenstein 2010-04-05 08:47:26.0 1322.16 s KILL

Name

queued 5 Compare GGA/PILS SPEAR

4 GGA SPEAR SWV

3 ParamILS SPEAR SWV

Status	D	Name	Start Time	CPU Time
done	1	ParamILS SATenstein QCP	2010-04-02 15:07:35.0	188920.02 s
done	2	GGA SATenstein QCP	2010-04-02 15:08:41.0	181342.54 s

New Algorithm Configuration Task

Target Algorithm

Choose a target algorithm to configure

SPEAR \$ New Algorithm

Configuration Space

Choose the Configuration Space for the target Algorithm

Full Configuration Space + New Configuration Space

Problem Instances

Choose an instance set to use for training

SWV-Train \$ New Instance Set

Configurator

Choose a configurator to run

ParamILS2.3.3 \$

Default Configurator Settings + New Configurator Settings

Execution Environment

Choose an execution environment to use

Arrow Cluster, single-node	\$)(New Execution Environment
----------------------------	------	---------------------------

Task Name: pILS SPEAR-SWV

Run

ILAL 1.0	 	
	 <u></u>	

Now	To	c la c
1101		101010

Evaluate algorithm performance

Analyse performance of an algorithm on an instance set.

Compare algorithm performance

Compare the performance of two algorithms on an instance set.

Configure algorithm

Optimize parameter settings to maximize algorithm performance on an instance set.

	<u>.</u>
	•

Status ID

99%

97%

8%

Start Time

1q/3r

CPU Time

0.8

2010-04-02 17:25:05.0 258122.70 s KILL

2010-04-02 17:31:31.0 253904.81 s KILL

Completed Tasks

Active Tasks

N/A

6 Compare GGA/PILS SATenstein 2010-04-05 08:47:26.0 1322.16 s KILL

Name

queued 5 Compare GGA/PILS SPEAR

4 GGA SPEAR SWV

3 ParamILS SPEAR SWV

Status	D	Name	Start Time	CPU Time
done	1	ParamILS SATenstein QCP	2010-04-02 15:07:35.0	188920.02 s
done	2	GGA SATenstein QCP	2010-04-02 15:08:41.0	181342.54 s

HH (work in progress)

HH (work in progress)

Key idea:

- avoid premature, uninformed, possibly detrimental design choices
- encourage developers to parameterise, provide functionally equivalent alternatives

HH (work in progress)

Key idea:

- avoid premature, uninformed, possibly detrimental design choices
- encourage developers to parameterise, provide functionally equivalent alternatives
- automatically make choices to obtain algorithm / software / system that performs well in a given application context

HH (work in progress)

Key idea:

- avoid premature, uninformed, possibly detrimental design choices
- encourage developers to parameterise, provide functionally equivalent alternatives
 generic programming language extension
- automatically make choices to obtain algorithm / software / system that performs well in a given application context
Programming by Optimisation (PbO)

HH (work in progress)

Key idea:

- avoid premature, uninformed, possibly detrimental design choices
- encourage developers to parameterise, provide functionally equivalent alternatives
 generic programming language extension
- automatically make choices to obtain algorithm / software / system that performs well in a given application context
 HAL + compute power

planner

Recent example: Hydra SAT solver (Xu et al. – to appear)

► automated construction of the solver (using ParamILS, SATzilla): ≈ 70 CPU days

- ► automated construction of the solver (using ParamILS, SATzilla): ≈ 70 CPU days
- ► wall-clock time on 10 CPU cluster: ≈ 7 CPU days

- ► automated construction of the solver (using ParamILS, SATzilla): ≈ 70 CPU days
- ► wall-clock time on 10 CPU cluster: ≈ 7 CPU days
- cost on Amazon Elastic Compute Cloud (EC2): 20.16 USD

- ▶ automated construction of the solver (using ParamILS, SATzilla):
 ≈ 70 CPU days
- ► wall-clock time on 10 CPU cluster: ≈ 7 CPU days
- cost on Amazon Elastic Compute Cloud (EC2): 20.16 USD
- 20.16 USD pays for ...
 - 0:38 hours of average software engineer

- ▶ automated construction of the solver (using ParamILS, SATzilla):
 ≈ 70 CPU days
- ► wall-clock time on 10 CPU cluster: ≈ 7 CPU days
- cost on Amazon Elastic Compute Cloud (EC2): 20.16 USD
- 20.16 USD pays for ...
 - 0:38 hours of average software engineer
 - 2:45 hours at minimum wage

 leverages computational power to construct better algorithms

- leverages computational power to construct better algorithms
- liberates human designers from boring, menial tasks and lets them focus on higher-level design issues

- leverages computational power to construct better algorithms
- liberates human designers from boring, menial tasks and lets them focus on higher-level design issues
- enables effective exploration of larger design spaces

- leverages computational power to construct better algorithms
- liberates human designers from boring, menial tasks and lets them focus on higher-level design issues
- enables effective exploration of larger design spaces
- facilitates principled design of heuristic algorithms

Holger Hoos: Computer-aided algorithm design

- leverages computational power to construct better algorithms
- liberates human designers from boring, menial tasks and lets them focus on higher-level design issues
- enables effective exploration of larger design spaces
- facilitates principled design of heuristic algorithms
- profoundly changes how we build and use algorithms

Acknowledgements

Collaborators:

- Domagoj Babic
- Alex Devkar
- Chris Fawcett
- Frank Hutter
- Chris Nell
- Eugene Nudelman
- Alena Shmygelska
- Chris Thachuk
- James Styles
- Lin Xu

Research funding:

- NSERC, MITACS, CFI
- IBM, Actenum Corp.

- Thomas Bartz-Beielstein (FH Köln)
- Marco Chiarandini (University of Southern Denmark)
- Alan Hu
- Kevin Leyton-Brown
- Kevin Murphy
- Yoav Shoham (Stanford University)
- Thomas Stützle (Université Libre de Bruxelles)

Computing resources:

- Arrow, BETA, ICICS clusters
- WestGrid