
Computer-Aided Algorithm Design:

Automated Tuning, Configuration,

Selection and Beyond

Holger H. Hoos

BETA Lab
Department of Computer Science

University of British Columbia
Canada

How to build better solvers

for hard problems?

Holger Hoos: Computer-aided algorithm design 1

How to build better solvers for hard problems?

I construct a provably good solver

I roll up your sleeves and do the best you can

I use your little grey cells, then your little black chips

Holger Hoos: Computer-aided algorithm design 2

How to build better solvers for hard problems?

I construct a provably good solver

I roll up your sleeves and do the best you can

I use your little grey cells, then your little black chips

Holger Hoos: Computer-aided algorithm design 2

How to build better solvers for hard problems?

I construct a provably good solver

I roll up your sleeves and do the best you can

I use your little grey cells, then your little black chips

Holger Hoos: Computer-aided algorithm design 2

How to build better solvers for hard problems?

I construct a provably good solver

I roll up your sleeves and do the best you can

I use your little grey cells, then your little black chips

+

Holger Hoos: Computer-aided algorithm design 2

How to build better solvers for hard problems?

I construct a provably good solver

I roll up your sleeves and do the best you can

I use your little grey cells, then your little black chips

 principled experimentation + generic techniques

Holger Hoos: Computer-aided algorithm design 2

Computer-aided Algorithm Design ...

I leverages computational power to construct
better algorithms

I liberates human designers from boring, menial tasks and
lets them focus on higher-level design issues

I enables effective exploration of larger design spaces

I facilitates principled design of heuristic algorithms

I profoundly changes how we build and use algorithms

Holger Hoos: Computer-aided algorithm design 44

Computer-aided Algorithm Design ...

I leverages computational power to construct
better algorithms

I liberates human designers from boring, menial tasks and
lets them focus on higher-level design issues

I enables effective exploration of larger design spaces

I facilitates principled design of heuristic algorithms

I profoundly changes how we build and use algorithms

Holger Hoos: Computer-aided algorithm design 44

Computer-aided Algorithm Design ...

I leverages computational power to construct
better algorithms

I liberates human designers from boring, menial tasks and
lets them focus on higher-level design issues

I enables effective exploration of larger design spaces

I facilitates principled design of heuristic algorithms

I profoundly changes how we build and use algorithms

Holger Hoos: Computer-aided algorithm design 44

Computer-aided Algorithm Design ...

I leverages computational power to construct
better algorithms

I liberates human designers from boring, menial tasks and
lets them focus on higher-level design issues

I enables effective exploration of larger design spaces

I facilitates principled design of heuristic algorithms

I profoundly changes how we build and use algorithms

Holger Hoos: Computer-aided algorithm design 44

Computer-aided Algorithm Design ...

I leverages computational power to construct
better algorithms

I liberates human designers from boring, menial tasks and
lets them focus on higher-level design issues

I enables effective exploration of larger design spaces

I facilitates principled design of heuristic algorithms

I profoundly changes how we build and use algorithms

Holger Hoos: Computer-aided algorithm design 44

High-performance heuristic algorithms are difficult to design

I many design choices (representation / search space;
neighbourhoods; search strategy; variable/value selection
heuristic; restart rules; pre-processing; data structures; ...)

I best performance often achieved by combination
of various heuristics
(Howe et al. 1999; Fox & Long 2001; Roberts et al. 2007;

Richter & Westphal 2009; Valenzano et al. 2010; . . .)

I various heuristic components interact in complex ways
 unexpected, emergent behaviour

I performance can be tricky to assess due to
I differences in behaviour across problem instances
I stochasticity

Holger Hoos: Computer-aided algorithm design 3

High-performance heuristic algorithms are difficult to design

I many design choices (representation / search space;
neighbourhoods; search strategy; variable/value selection
heuristic; restart rules; pre-processing; data structures; ...)

I best performance often achieved by combination
of various heuristics

(Howe et al. 1999; Fox & Long 2001; Roberts et al. 2007;

Richter & Westphal 2009; Valenzano et al. 2010; . . .)

I various heuristic components interact in complex ways
 unexpected, emergent behaviour

I performance can be tricky to assess due to
I differences in behaviour across problem instances
I stochasticity

Holger Hoos: Computer-aided algorithm design 3

High-performance heuristic algorithms are difficult to design

I many design choices (representation / search space;
neighbourhoods; search strategy; variable/value selection
heuristic; restart rules; pre-processing; data structures; ...)

I best performance often achieved by combination
of various heuristics
(Howe et al. 1999; Fox & Long 2001; Roberts et al. 2007;

Richter & Westphal 2009; Valenzano et al. 2010; . . .)

I various heuristic components interact in complex ways
 unexpected, emergent behaviour

I performance can be tricky to assess due to
I differences in behaviour across problem instances
I stochasticity

Holger Hoos: Computer-aided algorithm design 3

High-performance heuristic algorithms are difficult to design

I many design choices (representation / search space;
neighbourhoods; search strategy; variable/value selection
heuristic; restart rules; pre-processing; data structures; ...)

I best performance often achieved by combination
of various heuristics
(Howe et al. 1999; Fox & Long 2001; Roberts et al. 2007;

Richter & Westphal 2009; Valenzano et al. 2010; . . .)

I various heuristic components interact in complex ways
 unexpected, emergent behaviour

I performance can be tricky to assess due to
I differences in behaviour across problem instances
I stochasticity

Holger Hoos: Computer-aided algorithm design 3

High-performance heuristic algorithms are difficult to design

I many design choices (representation / search space;
neighbourhoods; search strategy; variable/value selection
heuristic; restart rules; pre-processing; data structures; ...)

I best performance often achieved by combination
of various heuristics
(Howe et al. 1999; Fox & Long 2001; Roberts et al. 2007;

Richter & Westphal 2009; Valenzano et al. 2010; . . .)

I various heuristic components interact in complex ways
 unexpected, emergent behaviour

I performance can be tricky to assess due to
I differences in behaviour across problem instances
I stochasticity

Holger Hoos: Computer-aided algorithm design 3

Therefore ...

I time-consuming design process, success often
critically dependent on experience, intuition, luck

I resulting algorithms often complex,
somewhat ad-hoc, not fully optimised

Holger Hoos: Computer-aided algorithm design 4

Therefore ...

I time-consuming design process, success often
critically dependent on experience, intuition, luck

I resulting algorithms often complex,
somewhat ad-hoc, not fully optimised

Holger Hoos: Computer-aided algorithm design 4

Real-world example:

I Application: Solving SAT-encoded software verification
problems

I Given: High-performance DPLL-type SAT solver (Spear)
I 26 parameters (7 categorical, 3 Boolean, 12 continuous,

4 integer-valued)
I control variable/value ordering heuristics, clause learning,

restarts, ...

I Goal: Minimize expected run-time on ‘typical’ SAT instances
from software verification tool

I Problems:

– default settings ≈ 300 seconds / run
– good performance on some instances may not generalise

Holger Hoos: Computer-aided algorithm design 5

Real-world example:

I Application: Solving SAT-encoded software verification
problems

I Given: High-performance DPLL-type SAT solver (Spear)
I 26 parameters (7 categorical, 3 Boolean, 12 continuous,

4 integer-valued)
I control variable/value ordering heuristics, clause learning,

restarts, ...

I Goal: Minimize expected run-time on ‘typical’ SAT instances
from software verification tool

I Problems:

– default settings ≈ 300 seconds / run
– good performance on some instances may not generalise

Holger Hoos: Computer-aided algorithm design 5

Real-world example:

I Application: Solving SAT-encoded software verification
problems

I Given: High-performance DPLL-type SAT solver (Spear)
I 26 parameters (7 categorical, 3 Boolean, 12 continuous,

4 integer-valued)
I control variable/value ordering heuristics, clause learning,

restarts, ...

I Goal: Minimize expected run-time on ‘typical’ SAT instances
from software verification tool

I Problems:

– default settings ≈ 300 seconds / run
– good performance on some instances may not generalise

Holger Hoos: Computer-aided algorithm design 5

Real-world example:

I Application: Solving SAT-encoded software verification
problems

I Given: High-performance DPLL-type SAT solver (Spear)
I 26 parameters (7 categorical, 3 Boolean, 12 continuous,

4 integer-valued)
I control variable/value ordering heuristics, clause learning,

restarts, ...

I Goal: Minimize expected run-time on ‘typical’ SAT instances
from software verification tool

I Problems:

– default settings ≈ 300 seconds / run
– good performance on some instances may not generalise

Holger Hoos: Computer-aided algorithm design 5

Outline

1. Introduction

2. From traditional to computer-aided algorithm design

3. Design spaces and design patterns

4. Meta-algorithmic search and optimisation procedures

5. Three success stories (SAT, timetabling, MIP)

6. The next step: Programming by Optimisation

Holger Hoos: Computer-aided algorithm design 6

From traditional to computer-aided
algorithm design

Traditional algorithm design approach:

I iterative, manual process

I designer gradually introduces/modifies components or
mechanisms

I test performance on benchmark instances

I design often starts from generic or broadly applicable
problem solving method (e.g., evolutionary algorithm)

Holger Hoos: Computer-aided algorithm design 7

From traditional to computer-aided
algorithm design

Traditional algorithm design approach:

I iterative, manual process

I designer gradually introduces/modifies components or
mechanisms

I test performance on benchmark instances

I design often starts from generic or broadly applicable
problem solving method (e.g., evolutionary algorithm)

Holger Hoos: Computer-aided algorithm design 7

From traditional to computer-aided
algorithm design

Traditional algorithm design approach:

I iterative, manual process

I designer gradually introduces/modifies components or
mechanisms

I test performance on benchmark instances

I design often starts from generic or broadly applicable
problem solving method (e.g., evolutionary algorithm)

Holger Hoos: Computer-aided algorithm design 7

From traditional to computer-aided
algorithm design

Traditional algorithm design approach:

I iterative, manual process

I designer gradually introduces/modifies components or
mechanisms

I test performance on benchmark instances

I design often starts from generic or broadly applicable
problem solving method (e.g., evolutionary algorithm)

Holger Hoos: Computer-aided algorithm design 7

Note:

I During the design process, many decisions are made.

I Some choices take the form of parameters,
others are hard-coded.

I Design decisions interact in complex ways.

Holger Hoos: Computer-aided algorithm design 8

Note:

I During the design process, many decisions are made.

I Some choices take the form of parameters,
others are hard-coded.

I Design decisions interact in complex ways.

Holger Hoos: Computer-aided algorithm design 8

Note:

I During the design process, many decisions are made.

I Some choices take the form of parameters,
others are hard-coded.

I Design decisions interact in complex ways.

Holger Hoos: Computer-aided algorithm design 8

Problems:

I Design process is labour-intensive.

I Design decisions often made in ad-hoc fasion,
based on limited experimentation and intuition.

I Human designers typically over-generalise observations,
explore few designs.

I Implicit assumptions of independence, monotonicity
are often incorrect.

I Number of components and mechanisms tends to grow
in each stage of design process.

 complicated designs, unfulfilled performance potential

Holger Hoos: Computer-aided algorithm design 9

Problems:

I Design process is labour-intensive.

I Design decisions often made in ad-hoc fasion,
based on limited experimentation and intuition.

I Human designers typically over-generalise observations,
explore few designs.

I Implicit assumptions of independence, monotonicity
are often incorrect.

I Number of components and mechanisms tends to grow
in each stage of design process.

 complicated designs, unfulfilled performance potential

Holger Hoos: Computer-aided algorithm design 9

Problems:

I Design process is labour-intensive.

I Design decisions often made in ad-hoc fasion,
based on limited experimentation and intuition.

I Human designers typically over-generalise observations,
explore few designs.

I Implicit assumptions of independence, monotonicity
are often incorrect.

I Number of components and mechanisms tends to grow
in each stage of design process.

 complicated designs, unfulfilled performance potential

Holger Hoos: Computer-aided algorithm design 9

Problems:

I Design process is labour-intensive.

I Design decisions often made in ad-hoc fasion,
based on limited experimentation and intuition.

I Human designers typically over-generalise observations,
explore few designs.

I Implicit assumptions of independence, monotonicity
are often incorrect.

I Number of components and mechanisms tends to grow
in each stage of design process.

 complicated designs, unfulfilled performance potential

Holger Hoos: Computer-aided algorithm design 9

Problems:

I Design process is labour-intensive.

I Design decisions often made in ad-hoc fasion,
based on limited experimentation and intuition.

I Human designers typically over-generalise observations,
explore few designs.

I Implicit assumptions of independence, monotonicity
are often incorrect.

I Number of components and mechanisms tends to grow
in each stage of design process.

 complicated designs, unfulfilled performance potential

Holger Hoos: Computer-aided algorithm design 9

Problems:

I Design process is labour-intensive.

I Design decisions often made in ad-hoc fasion,
based on limited experimentation and intuition.

I Human designers typically over-generalise observations,
explore few designs.

I Implicit assumptions of independence, monotonicity
are often incorrect.

I Number of components and mechanisms tends to grow
in each stage of design process.

 complicated designs, unfulfilled performance potential

Holger Hoos: Computer-aided algorithm design 9

Solution: Computer-aided Algorithm Design

I Goal: construct high-performance algorithms automatically

I Key idea: use fully formalised procedures to effectively explore
Key idea: large space of candidate designs

 genetic programming, hyper-heuristics, reactive search;
learning and intelligent optimisation, SLS engineering;
meta-learning; program synthesis

Holger Hoos: Computer-aided algorithm design 10

Solution: Computer-aided Algorithm Design

I Goal: construct high-performance algorithms automatically

I Key idea: use fully formalised procedures to effectively explore
Key idea: large space of candidate designs

 genetic programming, hyper-heuristics, reactive search;
learning and intelligent optimisation, SLS engineering;
meta-learning; program synthesis

Holger Hoos: Computer-aided algorithm design 10

Solution: Computer-aided Algorithm Design

I Goal: construct high-performance algorithms automatically

I Key idea: use fully formalised procedures to effectively explore
Key idea: large space of candidate designs

 genetic programming, hyper-heuristics, reactive search

;
learning and intelligent optimisation, SLS engineering;
meta-learning; program synthesis

Holger Hoos: Computer-aided algorithm design 10

Solution: Computer-aided Algorithm Design

I Goal: construct high-performance algorithms automatically

I Key idea: use fully formalised procedures to effectively explore
Key idea: large space of candidate designs

 genetic programming, hyper-heuristics, reactive search;
learning and intelligent optimisation, SLS engineering;
meta-learning; program synthesis

Holger Hoos: Computer-aided algorithm design 10

Human designer:

I specifies (possibly large) space of candidate algorithm design

I supplies set of problem instances for performance evaluation

I specifies performance metric

Meta-algorithmic system:

I explores design space in principled manner

I evaluates candidate design

I finds high-performance designs

Holger Hoos: Computer-aided algorithm design 11

Human designer:

I specifies (possibly large) space of candidate algorithm design

I supplies set of problem instances for performance evaluation

I specifies performance metric

Meta-algorithmic system:

I explores design space in principled manner

I evaluates candidate design

I finds high-performance designs

Holger Hoos: Computer-aided algorithm design 11

Human designer:

I specifies (possibly large) space of candidate algorithm design

I supplies set of problem instances for performance evaluation

I specifies performance metric

Meta-algorithmic system:

I explores design space in principled manner

I evaluates candidate design

I finds high-performance designs

Holger Hoos: Computer-aided algorithm design 11

Human designer:

I specifies (possibly large) space of candidate algorithm design

I supplies set of problem instances for performance evaluation

I specifies performance metric

Meta-algorithmic system:

I explores design space in principled manner

I evaluates candidate design

I finds high-performance designs

Holger Hoos: Computer-aided algorithm design 11

Human designer:

I specifies (possibly large) space of candidate algorithm design

I supplies set of problem instances for performance evaluation

I specifies performance metric

Meta-algorithmic system:

I explores design space in principled manner

I evaluates candidate design

I finds high-performance designs

Holger Hoos: Computer-aided algorithm design 11

Human designer:

I specifies (possibly large) space of candidate algorithm design

I supplies set of problem instances for performance evaluation

I specifies performance metric

Meta-algorithmic system:

I explores design space in principled manner

I evaluates candidate design

I finds high-performance designs

Holger Hoos: Computer-aided algorithm design 11

Advantages:

I lets human designer focus on higher-level issues

I enables better exploration of larger design spaces

I exploits complementary strengths of different approaches
for solving a given problem

I uses principled, fully formalised methods for algorithm design

I can be used to customise algorithms for use in specific
applications with minimal human effort

Holger Hoos: Computer-aided algorithm design 12

Advantages:

I lets human designer focus on higher-level issues

I enables better exploration of larger design spaces

I exploits complementary strengths of different approaches
for solving a given problem

I uses principled, fully formalised methods for algorithm design

I can be used to customise algorithms for use in specific
applications with minimal human effort

Holger Hoos: Computer-aided algorithm design 12

Advantages:

I lets human designer focus on higher-level issues

I enables better exploration of larger design spaces

I exploits complementary strengths of different approaches
for solving a given problem

I uses principled, fully formalised methods for algorithm design

I can be used to customise algorithms for use in specific
applications with minimal human effort

Holger Hoos: Computer-aided algorithm design 12

Advantages:

I lets human designer focus on higher-level issues

I enables better exploration of larger design spaces

I exploits complementary strengths of different approaches
for solving a given problem

I uses principled, fully formalised methods for algorithm design

I can be used to customise algorithms for use in specific
applications with minimal human effort

Holger Hoos: Computer-aided algorithm design 12

Advantages:

I lets human designer focus on higher-level issues

I enables better exploration of larger design spaces

I exploits complementary strengths of different approaches
for solving a given problem

I uses principled, fully formalised methods for algorithm design

I can be used to customise algorithms for use in specific
applications with minimal human effort

Holger Hoos: Computer-aided algorithm design 12

Example: SAT-based software verification

Hutter, Babic, HH, Hu (2007)

I Goal: Solve suite of SAT-encoded software verification
Goal: instances as fast as possible

I new DPLL-style SAT solver Spear (by Domagoj Babic)

= highly parameterised heuristic algorithm
= (26 parameters, ≈ 8.3 × 1017 configurations)

I manual configuration by algorithm designer

I automated configuration using ParamILS, a generic
algorithm configuration procedure
Hutter, HH, Stützle (2007)

Holger Hoos: Computer-aided algorithm design 13

Example: SAT-based software verification

Hutter, Babic, HH, Hu (2007)

I Goal: Solve suite of SAT-encoded software verification
Goal: instances as fast as possible

I new DPLL-style SAT solver Spear (by Domagoj Babic)

= highly parameterised heuristic algorithm
= (26 parameters, ≈ 8.3 × 1017 configurations)

I manual configuration by algorithm designer

I automated configuration using ParamILS, a generic
algorithm configuration procedure
Hutter, HH, Stützle (2007)

Holger Hoos: Computer-aided algorithm design 13

Example: SAT-based software verification

Hutter, Babic, HH, Hu (2007)

I Goal: Solve suite of SAT-encoded software verification
Goal: instances as fast as possible

I new DPLL-style SAT solver Spear (by Domagoj Babic)

= highly parameterised heuristic algorithm
= (26 parameters, ≈ 8.3 × 1017 configurations)

I manual configuration by algorithm designer

I automated configuration using ParamILS, a generic
algorithm configuration procedure
Hutter, HH, Stützle (2007)

Holger Hoos: Computer-aided algorithm design 13

Example: SAT-based software verification

Hutter, Babic, HH, Hu (2007)

I Goal: Solve suite of SAT-encoded software verification
Goal: instances as fast as possible

I new DPLL-style SAT solver Spear (by Domagoj Babic)

= highly parameterised heuristic algorithm
= (26 parameters, ≈ 8.3 × 1017 configurations)

I manual configuration by algorithm designer

I automated configuration using ParamILS, a generic
algorithm configuration procedure
Hutter, HH, Stützle (2007)

Holger Hoos: Computer-aided algorithm design 13

Spear: Empirical results on software verification benchmarks

solver num. solved mean run-time

MiniSAT 2.0 302/302 161.3 CPU sec

Spear original 298/302 787.1 CPU sec
Spear generic. opt. config. 302/302 35.9 CPU sec
Spear specific. opt. config. 302/302 1.5 CPU sec

I ≈ 500-fold speedup through use automated algorithm
configuration procedure (ParamILS)

I new state of the art
(winner of 2007 SMT Competition, QF BV category)

Holger Hoos: Computer-aided algorithm design 14

Spear: Empirical results on software verification benchmarks

solver num. solved mean run-time

MiniSAT 2.0 302/302 161.3 CPU sec

Spear original 298/302 787.1 CPU sec

Spear generic. opt. config. 302/302 35.9 CPU sec
Spear specific. opt. config. 302/302 1.5 CPU sec

I ≈ 500-fold speedup through use automated algorithm
configuration procedure (ParamILS)

I new state of the art
(winner of 2007 SMT Competition, QF BV category)

Holger Hoos: Computer-aided algorithm design 14

Spear: Empirical results on software verification benchmarks

solver num. solved mean run-time

MiniSAT 2.0 302/302 161.3 CPU sec

Spear original 298/302 787.1 CPU sec
Spear generic. opt. config. 302/302 35.9 CPU sec

Spear specific. opt. config. 302/302 1.5 CPU sec

I ≈ 500-fold speedup through use automated algorithm
configuration procedure (ParamILS)

I new state of the art
(winner of 2007 SMT Competition, QF BV category)

Holger Hoos: Computer-aided algorithm design 14

Spear: Empirical results on software verification benchmarks

solver num. solved mean run-time

MiniSAT 2.0 302/302 161.3 CPU sec

Spear original 298/302 787.1 CPU sec
Spear generic. opt. config. 302/302 35.9 CPU sec
Spear specific. opt. config. 302/302 1.5 CPU sec

I ≈ 500-fold speedup through use automated algorithm
configuration procedure (ParamILS)

I new state of the art
(winner of 2007 SMT Competition, QF BV category)

Holger Hoos: Computer-aided algorithm design 14

Spear: Empirical results on software verification benchmarks

solver num. solved mean run-time

MiniSAT 2.0 302/302 161.3 CPU sec

Spear original 298/302 787.1 CPU sec
Spear generic. opt. config. 302/302 35.9 CPU sec
Spear specific. opt. config. 302/302 1.5 CPU sec

I ≈ 500-fold speedup through use automated algorithm
configuration procedure (ParamILS)

I new state of the art
(winner of 2007 SMT Competition, QF BV category)

Holger Hoos: Computer-aided algorithm design 14

Design spaces and design patterns

Special cases of computer-aided algorithm design:

I parameter optimisation (for given set of instances)

Birattari et al. (2002); Adenso-Diaz & Laguna (2006),

Hutter et al. (2007–9), Ansótegui et al. (2009); Bartz-Beielstein (2006)

I algorithm configuration from components
(for given set of instances)
Fukunaga (2002), Chiarandini et al. (2008), KhudaBukhsh et al. (2009)

I restart strategies

Luby et al. (1993); Gagliolo & Schmidhuber (2007);

Streeter et al. (2007)

Holger Hoos: Computer-aided algorithm design 15

Design spaces and design patterns

Special cases of computer-aided algorithm design:

I parameter optimisation (for given set of instances)

Birattari et al. (2002); Adenso-Diaz & Laguna (2006),

Hutter et al. (2007–9), Ansótegui et al. (2009); Bartz-Beielstein (2006)

I algorithm configuration from components
(for given set of instances)
Fukunaga (2002), Chiarandini et al. (2008), KhudaBukhsh et al. (2009)

I restart strategies

Luby et al. (1993); Gagliolo & Schmidhuber (2007);

Streeter et al. (2007)

Holger Hoos: Computer-aided algorithm design 15

Design spaces and design patterns

Special cases of computer-aided algorithm design:

I parameter optimisation (for given set of instances)

Birattari et al. (2002); Adenso-Diaz & Laguna (2006),

Hutter et al. (2007–9), Ansótegui et al. (2009); Bartz-Beielstein (2006)

I algorithm configuration from components
(for given set of instances)
Fukunaga (2002), Chiarandini et al. (2008), KhudaBukhsh et al. (2009)

I restart strategies

Luby et al. (1993); Gagliolo & Schmidhuber (2007);

Streeter et al. (2007)

Holger Hoos: Computer-aided algorithm design 15

Special cases of computer-aided algorithm design (2):

I instance-based algorithm configurators
Hutter et al. (2006); Malitsky & Sellmann (2009)

I on-line algorithm control / reactive search
Carchrae & Beck (2005); Battiti et al. (2008)

I instance-based algorithm selection

Rice (1976); Leyton-Brown et al. (2003); Guerri & Milano (2004);

Xu et al. (2008)

I algorithm portfolios (static and dynamic)

Huberman et al. (1997), Gomes & Selman (2001);

Gagliolo & Schmidhuber (2007)

 meta-algorithmic design patterns, induce design spaces

Holger Hoos: Computer-aided algorithm design 16

Special cases of computer-aided algorithm design (2):

I instance-based algorithm configurators
Hutter et al. (2006); Malitsky & Sellmann (2009)

I on-line algorithm control / reactive search
Carchrae & Beck (2005); Battiti et al. (2008)

I instance-based algorithm selection

Rice (1976); Leyton-Brown et al. (2003); Guerri & Milano (2004);

Xu et al. (2008)

I algorithm portfolios (static and dynamic)

Huberman et al. (1997), Gomes & Selman (2001);

Gagliolo & Schmidhuber (2007)

 meta-algorithmic design patterns, induce design spaces

Holger Hoos: Computer-aided algorithm design 16

Special cases of computer-aided algorithm design (2):

I instance-based algorithm configurators
Hutter et al. (2006); Malitsky & Sellmann (2009)

I on-line algorithm control / reactive search
Carchrae & Beck (2005); Battiti et al. (2008)

I instance-based algorithm selection

Rice (1976); Leyton-Brown et al. (2003); Guerri & Milano (2004);

Xu et al. (2008)

I algorithm portfolios (static and dynamic)

Huberman et al. (1997), Gomes & Selman (2001);

Gagliolo & Schmidhuber (2007)

 meta-algorithmic design patterns, induce design spaces

Holger Hoos: Computer-aided algorithm design 16

Special cases of computer-aided algorithm design (2):

I instance-based algorithm configurators
Hutter et al. (2006); Malitsky & Sellmann (2009)

I on-line algorithm control / reactive search
Carchrae & Beck (2005); Battiti et al. (2008)

I instance-based algorithm selection

Rice (1976); Leyton-Brown et al. (2003); Guerri & Milano (2004);

Xu et al. (2008)

I algorithm portfolios (static and dynamic)

Huberman et al. (1997), Gomes & Selman (2001);

Gagliolo & Schmidhuber (2007)

 meta-algorithmic design patterns, induce design spaces

Holger Hoos: Computer-aided algorithm design 16

Special cases of computer-aided algorithm design (2):

I instance-based algorithm configurators
Hutter et al. (2006); Malitsky & Sellmann (2009)

I on-line algorithm control / reactive search
Carchrae & Beck (2005); Battiti et al. (2008)

I instance-based algorithm selection

Rice (1976); Leyton-Brown et al. (2003); Guerri & Milano (2004);

Xu et al. (2008)

I algorithm portfolios (static and dynamic)

Huberman et al. (1997), Gomes & Selman (2001);

Gagliolo & Schmidhuber (2007)

 meta-algorithmic design patterns, induce design spaces

Holger Hoos: Computer-aided algorithm design 16

Meta-algorithmic search and
optimisation procedures

How to search design spaces?

I use powerful heuristic search and optimisation procedures,
combined with significant amounts of computing power

I use machine learning methods (classification, regression),
combined with significant amount of training data

Holger Hoos: Computer-aided algorithm design 17

Meta-algorithmic search and
optimisation procedures

How to search design spaces?

I use powerful heuristic search and optimisation procedures,
combined with significant amounts of computing power

I use machine learning methods (classification, regression),
combined with significant amount of training data

Holger Hoos: Computer-aided algorithm design 17

Some examples:

I parameter tuning:
I numerical optimisation techniques

e.g., CMA-ES (Hansen & Ostermeier 2001)

I model-based optimisation methods
e.g., SPO (Bartz-Beielstein 2006),

e.g., SPO+, TB-SPO (Hutter et al. 2009–10)

I algorithm configuration:
I genetic programming

e.g., CLASS (Fukunaga 2002)

I racing procedures
e.g., F-Race (Birattari et al. 2002)

I advanced stochastic local search procedures
e.g., ParamILS (Hutter et al. 2007)

Holger Hoos: Computer-aided algorithm design 18

Some examples:

I parameter tuning:
I numerical optimisation techniques

e.g., CMA-ES (Hansen & Ostermeier 2001)

I model-based optimisation methods
e.g., SPO (Bartz-Beielstein 2006),

e.g., SPO+, TB-SPO (Hutter et al. 2009–10)

I algorithm configuration:
I genetic programming

e.g., CLASS (Fukunaga 2002)

I racing procedures
e.g., F-Race (Birattari et al. 2002)

I advanced stochastic local search procedures
e.g., ParamILS (Hutter et al. 2007)

Holger Hoos: Computer-aided algorithm design 18

Some examples:

I parameter tuning:
I numerical optimisation techniques

e.g., CMA-ES (Hansen & Ostermeier 2001)

I model-based optimisation methods
e.g., SPO (Bartz-Beielstein 2006),

e.g., SPO+, TB-SPO (Hutter et al. 2009–10)

I algorithm configuration:
I genetic programming

e.g., CLASS (Fukunaga 2002)

I racing procedures
e.g., F-Race (Birattari et al. 2002)

I advanced stochastic local search procedures
e.g., ParamILS (Hutter et al. 2007)

Holger Hoos: Computer-aided algorithm design 18

Some examples:

I parameter tuning:
I numerical optimisation techniques

e.g., CMA-ES (Hansen & Ostermeier 2001)

I model-based optimisation methods
e.g., SPO (Bartz-Beielstein 2006),

e.g., SPO+, TB-SPO (Hutter et al. 2009–10)

I algorithm configuration:
I genetic programming

e.g., CLASS (Fukunaga 2002)

I racing procedures
e.g., F-Race (Birattari et al. 2002)

I advanced stochastic local search procedures
e.g., ParamILS (Hutter et al. 2007)

Holger Hoos: Computer-aided algorithm design 18

Some examples:

I parameter tuning:
I numerical optimisation techniques

e.g., CMA-ES (Hansen & Ostermeier 2001)

I model-based optimisation methods
e.g., SPO (Bartz-Beielstein 2006),

e.g., SPO+, TB-SPO (Hutter et al. 2009–10)

I algorithm configuration:
I genetic programming

e.g., CLASS (Fukunaga 2002)

I racing procedures
e.g., F-Race (Birattari et al. 2002)

I advanced stochastic local search procedures
e.g., ParamILS (Hutter et al. 2007)

Holger Hoos: Computer-aided algorithm design 18

More examples:

I instance-based algorithm selection

I classification approaches (e.g., Guerri & Milano 2004)

I regression approaches (e.g., Leyton-Brown et al. 2003,
Xu et al. 2008)

I dynamic algorithm portfolios (time allocators)

I bandit solvers (e.g., Gagliolo & Schmidhuber 2007)

I evolutionary algorithms (e.g., Harik & Lobo 1999)

Holger Hoos: Computer-aided algorithm design 19

More examples:

I instance-based algorithm selection

I classification approaches (e.g., Guerri & Milano 2004)

I regression approaches (e.g., Leyton-Brown et al. 2003,
Xu et al. 2008)

I dynamic algorithm portfolios (time allocators)

I bandit solvers (e.g., Gagliolo & Schmidhuber 2007)

I evolutionary algorithms (e.g., Harik & Lobo 1999)

Holger Hoos: Computer-aided algorithm design 19

More examples:

I instance-based algorithm selection

I classification approaches (e.g., Guerri & Milano 2004)

I regression approaches (e.g., Leyton-Brown et al. 2003,
Xu et al. 2008)

I dynamic algorithm portfolios (time allocators)

I bandit solvers (e.g., Gagliolo & Schmidhuber 2007)

I evolutionary algorithms (e.g., Harik & Lobo 1999)

Holger Hoos: Computer-aided algorithm design 19

More examples:

I instance-based algorithm selection

I classification approaches (e.g., Guerri & Milano 2004)

I regression approaches (e.g., Leyton-Brown et al. 2003,
Xu et al. 2008)

I dynamic algorithm portfolios (time allocators)

I bandit solvers (e.g., Gagliolo & Schmidhuber 2007)

I evolutionary algorithms (e.g., Harik & Lobo 1999)

Holger Hoos: Computer-aided algorithm design 19

Many open questions:

I Which procedure for which type of design space?

I How to deal with hybrid design patterns?

I How to best deal with censored, sparse data?

Holger Hoos: Computer-aided algorithm design 20

Many open questions:

I Which procedure for which type of design space?

I How to deal with hybrid design patterns?

I How to best deal with censored, sparse data?

Holger Hoos: Computer-aided algorithm design 20

Many open questions:

I Which procedure for which type of design space?

I How to deal with hybrid design patterns?

I How to best deal with censored, sparse data?

Holger Hoos: Computer-aided algorithm design 20

Three success stories

How good are current methods for computer-aided
algorithm design?

Holger Hoos: Computer-aided algorithm design 21

Three success stories

How good are current methods for computer-aided
algorithm design?

“The proof is in the pudding”:

I Propositional Satisfiability

I Course Timetabling

I Mixed Integer Programming

Holger Hoos: Computer-aided algorithm design 21

Three success stories

How good are current methods for computer-aided
algorithm design?

“The proof is in the pudding”:

I Propositional Satisfiability

I Course Timetabling

I Mixed Integer Programming

Further successes:

– protein structure prediction (Thachuk et al. 2007)

– SAT (KhudaBukhsh et al. 2009; Xu et al. – to appear;
Tompkins & HH – to appear)

– TSP (Styles & HH – in preparation)

Holger Hoos: Computer-aided algorithm design 21

SATzilla: Portfolio-based algorithm selection
for SAT
Xu, Hutter, HH, Leyton-Brown (2008)

Key idea: Instance-based Algorithm Selection (Rice 1976)

I Given: set S of algorithms for a problem, problem instance π

I Select from S the algorithm expected to solve π
most efficiently, based on (cheaply computable) features of π.

SATzilla in a nutshell:

I CNF formula 84 polytime-computable instance features

I features performance prediction for set of SAT solvers

I run solver with best predicted performance

Holger Hoos: Computer-aided algorithm design 22

SATzilla: Portfolio-based algorithm selection
for SAT
Xu, Hutter, HH, Leyton-Brown (2008)

Key idea: Instance-based Algorithm Selection (Rice 1976)

I Given: set S of algorithms for a problem, problem instance π

I Select from S the algorithm expected to solve π
most efficiently, based on (cheaply computable) features of π.

SATzilla in a nutshell:

I CNF formula 84 polytime-computable instance features

I features performance prediction for set of SAT solvers

I run solver with best predicted performance

Holger Hoos: Computer-aided algorithm design 22

SATzilla: Portfolio-based algorithm selection
for SAT
Xu, Hutter, HH, Leyton-Brown (2008)

Key idea: Instance-based Algorithm Selection (Rice 1976)

I Given: set S of algorithms for a problem, problem instance π

I Select from S the algorithm expected to solve π
most efficiently, based on (cheaply computable) features of π.

SATzilla in a nutshell:

I CNF formula 84 polytime-computable instance features

I features performance prediction for set of SAT solvers

I run solver with best predicted performance

Holger Hoos: Computer-aided algorithm design 22

SATzilla: Portfolio-based algorithm selection
for SAT
Xu, Hutter, HH, Leyton-Brown (2008)

Key idea: Instance-based Algorithm Selection (Rice 1976)

I Given: set S of algorithms for a problem, problem instance π

I Select from S the algorithm expected to solve π
most efficiently, based on (cheaply computable) features of π.

SATzilla in a nutshell:

I CNF formula 84 polytime-computable instance features

I features performance prediction for set of SAT solvers

I run solver with best predicted performance

Holger Hoos: Computer-aided algorithm design 22

Under the hood:

I Use state-of-the-art complete (DPLL) and incomplete (local
search) SAT solvers.

I Use ridge regression on selected features to predict solver
run-times from instance features.

I Use method by Schmee & Hahn (1979) to deal with censored
run-time data.

Holger Hoos: Computer-aided algorithm design 23

Under the hood:

I Use state-of-the-art complete (DPLL) and incomplete (local
search) SAT solvers.

I Use ridge regression on selected features to predict solver
run-times from instance features.

I Use method by Schmee & Hahn (1979) to deal with censored
run-time data.

Holger Hoos: Computer-aided algorithm design 23

Under the hood:

I Use state-of-the-art complete (DPLL) and incomplete (local
search) SAT solvers.

I Use ridge regression on selected features to predict solver
run-times from instance features.

I Use method by Schmee & Hahn (1979) to deal with censored
run-time data.

Holger Hoos: Computer-aided algorithm design 23

Some bells and whistles:

I Use pre-solvers to solve ‘easy’ instances quickly.

I Build run-time predictors for various types of instances,
use classifier to select best predictor based on instance
features.

I Predict time required for feature computation; if that time is
too long, use back-up solver.

 prizes in 5 of the 9 main categories of the 2009 SAT Solver
Competition (3 gold, 2 silver medals)

Holger Hoos: Computer-aided algorithm design 24

Some bells and whistles:

I Use pre-solvers to solve ‘easy’ instances quickly.

I Build run-time predictors for various types of instances,
use classifier to select best predictor based on instance
features.

I Predict time required for feature computation; if that time is
too long, use back-up solver.

 prizes in 5 of the 9 main categories of the 2009 SAT Solver
Competition (3 gold, 2 silver medals)

Holger Hoos: Computer-aided algorithm design 24

Some bells and whistles:

I Use pre-solvers to solve ‘easy’ instances quickly.

I Build run-time predictors for various types of instances,
use classifier to select best predictor based on instance
features.

I Predict time required for feature computation; if that time is
too long, use back-up solver.

 prizes in 5 of the 9 main categories of the 2009 SAT Solver
Competition (3 gold, 2 silver medals)

Holger Hoos: Computer-aided algorithm design 24

Some bells and whistles:

I Use pre-solvers to solve ‘easy’ instances quickly.

I Build run-time predictors for various types of instances,
use classifier to select best predictor based on instance
features.

I Predict time required for feature computation; if that time is
too long, use back-up solver.

 prizes in 5 of the 9 main categories of the 2009 SAT Solver
Competition (3 gold, 2 silver medals)

Holger Hoos: Computer-aided algorithm design 24

Post-Enrolment Course Timetabling
Chiarandini, Fawcett, HH (2008); Fawcett, HH, Chiarandini (in preparation)

Post-Enrolment Course Timetabling:

I students enroll in courses

I courses are assigned to rooms and time slots,
subject to hard constraints

I preferences are represented by soft constraints

Our solver:

I modular multiphase stochastic local search algorithm

I hard constraint solver: finds feasible course schedules

I soft constraint solver: optimise schedule (maintaining
feasibility)

Holger Hoos: Computer-aided algorithm design 25

Post-Enrolment Course Timetabling
Chiarandini, Fawcett, HH (2008); Fawcett, HH, Chiarandini (in preparation)

Post-Enrolment Course Timetabling:

I students enroll in courses

I courses are assigned to rooms and time slots,
subject to hard constraints

I preferences are represented by soft constraints

Our solver:

I modular multiphase stochastic local search algorithm

I hard constraint solver: finds feasible course schedules

I soft constraint solver: optimise schedule (maintaining
feasibility)

Holger Hoos: Computer-aided algorithm design 25

Our first solver:

I developed over ca. 1 month

I starting point: Chiarandini et al. (2003)

I soft constraint solver unchanged

I automatically configured hard constraint solver

Design space for hard constraint solver:

I parameterised combination of constructive search, tabu
search, diversification strategy

I 7 parameters, 50 400 configurations

Automated configuration process:

I configurator: FocusedILS 2.3 (Hutter et al. 2009)

I performance objective: solution quality after 300 CPU sec

Holger Hoos: Computer-aided algorithm design 26

Our first solver:

I developed over ca. 1 month

I starting point: Chiarandini et al. (2003)

I soft constraint solver unchanged

I automatically configured hard constraint solver

Design space for hard constraint solver:

I parameterised combination of constructive search, tabu
search, diversification strategy

I 7 parameters, 50 400 configurations

Automated configuration process:

I configurator: FocusedILS 2.3 (Hutter et al. 2009)

I performance objective: solution quality after 300 CPU sec

Holger Hoos: Computer-aided algorithm design 26

Our first solver:

I developed over ca. 1 month

I starting point: Chiarandini et al. (2003)

I soft constraint solver unchanged

I automatically configured hard constraint solver

Design space for hard constraint solver:

I parameterised combination of constructive search, tabu
search, diversification strategy

I 7 parameters, 50 400 configurations

Automated configuration process:

I configurator: FocusedILS 2.3 (Hutter et al. 2009)

I performance objective: solution quality after 300 CPU sec

Holger Hoos: Computer-aided algorithm design 26

2nd International Timetabling Competition (ITC), Track 2

Rank

Muller

Nothegger et al.

Our Solver 2008

Atsuta et al.

Cambazard et al.

0 10 20 30 40 50

●●● ●●●●●●●●● ● ●●●●●●●● ●●●●●●● ●●● ●●●●●●●●● ●●●●●●●●●● ●● ● ● ●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●

●●● ●●●●●●●●●●● ●●●●●●●●● ●● ●●●●●●●●●●●●●●● ●●● ●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●

●●●●●●●●●●●

●●●●● ●●● ● ●●● ●●● ●●● ●●●● ●●●● ●●●●●●●●●● ● ●●●●●●●●●●● ●●●●● ● ●●●●●●● ●●●●●●●●●●●●●●● ● ●●●

●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●

Distance To Feasibility

0 10 20 30 40 50

●●●●●●●●●●●●●●●●●● ●

Aggregate

Holger Hoos: Computer-aided algorithm design 27

Our latest solver:

I developed over ca. 6 months

I starting point: our previous solver

I automatically configured hard & soft constraint solvers

Design space for soft constraint solver:

I highly parameterised simulated annealing algorithm

I 11 parameters, 2.7 × 109 configurations

Automated configuration process:

I configurator: FocusedILS 2.4 (new version, multiple stages)

I multiple performance objectives
(final stage: solution quality after 600 CPU sec)

Holger Hoos: Computer-aided algorithm design 28

Our latest solver:

I developed over ca. 6 months

I starting point: our previous solver

I automatically configured hard & soft constraint solvers

Design space for soft constraint solver:

I highly parameterised simulated annealing algorithm

I 11 parameters, 2.7 × 109 configurations

Automated configuration process:

I configurator: FocusedILS 2.4 (new version, multiple stages)

I multiple performance objectives
(final stage: solution quality after 600 CPU sec)

Holger Hoos: Computer-aided algorithm design 28

Our latest solver:

I developed over ca. 6 months

I starting point: our previous solver

I automatically configured hard & soft constraint solvers

Design space for soft constraint solver:

I highly parameterised simulated annealing algorithm

I 11 parameters, 2.7 × 109 configurations

Automated configuration process:

I configurator: FocusedILS 2.4 (new version, multiple stages)

I multiple performance objectives
(final stage: solution quality after 600 CPU sec)

Holger Hoos: Computer-aided algorithm design 28

2-way race against ITC Track 2 winner

Rank

Cambazard et al.

Our Solver

5 10 15 20

Aggregate

I our solver wins beats ITC winner on 20 out of 24 competition instances

I application to university-wide exam scheduling at UBC
(≈ 1650 exams, 28 000 students)

Holger Hoos: Computer-aided algorithm design 29

2-way race against ITC Track 2 winner

Rank

Cambazard et al.

Our Solver

5 10 15 20

Aggregate

I our solver wins beats ITC winner on 20 out of 24 competition instances

I application to university-wide exam scheduling at UBC
(≈ 1650 exams, 28 000 students)

Holger Hoos: Computer-aided algorithm design 29

Mixed Integer Programming (MIP)
Hutter, HH, Leyton-Brown, Stützle (2009); Hutter, HH, Leyton-Brown (2010)

I MIP is widely used for modelling optimisation problems

I MIP solvers play an important role for solving broad range of
real-world problems

CPLEX:

I prominent and widely used commercial MIP solver

I exact solver, based on sophisticated branch & cut algorithm
and numerous heuristics

I 159 parameters, 81 directly control search process

Holger Hoos: Computer-aided algorithm design 30

“A great deal of algorithmic development effort has been devoted to
establishing default ILOG CPLEX parameter settings that achieve good
performance on a wide variety of MIP models.”

[CPLEX 12.1 user manual, p. 478]

Automatically Configuring CPLEX:

I starting point: factory default settings

I 63 parameters (some with ‘AUTO’ settings)

I 1.38 × 1037 configurations

I configurator: FocusedILS 2.3 (Hutter et al. 2009)

I performance objective: minimal mean run-time

I configuration time: 10 × 2 CPU days

Holger Hoos: Computer-aided algorithm design 31

“A great deal of algorithmic development effort has been devoted to
establishing default ILOG CPLEX parameter settings that achieve good
performance on a wide variety of MIP models.”

[CPLEX 12.1 user manual, p. 478]

Automatically Configuring CPLEX:

I starting point: factory default settings

I 63 parameters (some with ‘AUTO’ settings)

I 1.38 × 1037 configurations

I configurator: FocusedILS 2.3 (Hutter et al. 2009)

I performance objective: minimal mean run-time

I configuration time: 10 × 2 CPU days

Holger Hoos: Computer-aided algorithm design 31

“A great deal of algorithmic development effort has been devoted to
establishing default ILOG CPLEX parameter settings that achieve good
performance on a wide variety of MIP models.”

[CPLEX 12.1 user manual, p. 478]

Automatically Configuring CPLEX:

I starting point: factory default settings

I 63 parameters (some with ‘AUTO’ settings)

I 1.38 × 1037 configurations

I configurator: FocusedILS 2.3 (Hutter et al. 2009)

I performance objective: minimal mean run-time

I configuration time: 10 × 2 CPU days

Holger Hoos: Computer-aided algorithm design 31

“A great deal of algorithmic development effort has been devoted to
establishing default ILOG CPLEX parameter settings that achieve good
performance on a wide variety of MIP models.”

[CPLEX 12.1 user manual, p. 478]

Automatically Configuring CPLEX:

I starting point: factory default settings

I 63 parameters (some with ‘AUTO’ settings)

I 1.38 × 1037 configurations

I configurator: FocusedILS 2.3 (Hutter et al. 2009)

I performance objective: minimal mean run-time

I configuration time: 10 × 2 CPU days

Holger Hoos: Computer-aided algorithm design 31

CPLEX on various MIPS benchmarks

Benchmark Default performance Optimised performance Speedup

[CPU sec] [CPU sec] factor

BCOL/Conic.sch 5.37 2.35 (2.4 ± 0.29) 2.2

BCOL/CLS 712 23.4 (327 ± 860) 30.4

BCOL/MIK 64.8 1.19 (301 ± 948) 54.4

CATS/Regions200 72 10.5 (11.4 ± 0.9) 6.8

RNA-QP 969 525 (827 ± 306) 1.8

(Timed-out runs are counted as 10 × cutoff time.)

Holger Hoos: Computer-aided algorithm design 32

CPLEX on various MIPS benchmarks

Benchmark Default performance Optimised performance Speedup

[CPU sec] [CPU sec] factor

BCOL/Conic.sch 5.37 2.35 (2.4 ± 0.29) 2.2

BCOL/CLS 712 23.4 (327 ± 860) 30.4

BCOL/MIK 64.8 1.19 (301 ± 948) 54.4

CATS/Regions200 72 10.5 (11.4 ± 0.9) 6.8

RNA-QP 969 525 (827 ± 306) 1.8

(Timed-out runs are counted as 10 × cutoff time.)

Holger Hoos: Computer-aided algorithm design 32

CPLEX on BCOL/CLS

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

default run-time [CPU s]

op
tim

is
ed

 ru
n-

tim
e

[C
P

U
 s

]

Holger Hoos: Computer-aided algorithm design 33

CPLEX on BCOL/Conic.sch

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

default run-time [CPU s]

op
tim

is
ed

 ru
n-

tim
e

[C
P

U
 s

]

Holger Hoos: Computer-aided algorithm design 34

Latest results: Gurobi on BCOL/MIK

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

op
tim

is
ed

 r
un

-t
im

e
[C

P
U

 s
ec

]

default run-time [CPU sec]

training

Configuration time: 10 × 2 CPU days

Holger Hoos: Computer-aided algorithm design 35

Latest results: Gurobi on BCOL/MIK

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

op
tim

is
ed

 r
un

-t
im

e
[C

P
U

 s
ec

]

default run-time [CPU sec]

training
test

Configuration time: 10 × 2 CPU days

Holger Hoos: Computer-aided algorithm design 35

Latest results: lpsolve on CA-WDP

100

101

102

103

104

105

106

100 101 102 103 104 105 106

op
tim

is
ed

 r
un

-t
im

e
[C

P
U

 s
ec

]

default run-time [CPU sec]

training

Configuration time: 10 × 2 CPU days

Holger Hoos: Computer-aided algorithm design 36

Latest results: lpsolve on CA-WDP

100

101

102

103

104

105

106

100 101 102 103 104 105 106

op
tim

is
ed

 r
un

-t
im

e
[C

P
U

 s
ec

]

default run-time [CPU sec]

training
test

Configuration time: 10 × 2 CPU days

Holger Hoos: Computer-aided algorithm design 36

How to use computer-aided algorithm design?

application context

+

design space

+

optimisation procedure

+

compute power

=

success

Holger Hoos: Computer-aided algorithm design 37

How to use computer-aided algorithm design?

application context

+

design space

+

optimisation procedure

+

compute power

=

success

Holger Hoos: Computer-aided algorithm design 37

How to use computer-aided algorithm design?

application context

+

design space

+

optimisation procedure

+

compute power

=

success

Holger Hoos: Computer-aided algorithm design 37

How to use computer-aided algorithm design?

application context

+

design space

+

optimisation procedure

+

compute power

=

success

Holger Hoos: Computer-aided algorithm design 37

How to use computer-aided algorithm design?

application context

+

design space

+

optimisation procedure

+

compute power

=

success

Holger Hoos: Computer-aided algorithm design 37

How to use computer-aided algorithm design?

application context

+

design space

+

optimisation procedure

+

compute power

=

success

Holger Hoos: Computer-aided algorithm design 37

The next step:
Programming by Optimisation

How to easily use computer-aided algorithm design?

Need effective support for ...

I specification of rich design spaces

I automated design (and analysis) process

Holger Hoos: Computer-aided algorithm design 38

The next step:
Programming by Optimisation

How to easily use computer-aided algorithm design?

Need effective support for ...

I specification of rich design spaces

I automated design (and analysis) process

Holger Hoos: Computer-aided algorithm design 38

The next step:
Programming by Optimisation

How to easily use computer-aided algorithm design?

Need effective support for ...

I specification of rich design spaces

I automated design (and analysis) process

Holger Hoos: Computer-aided algorithm design 38

HAL: High-performance Algorithm Lab
Nell, Fawcett, HH, Leyton-Brown (under review)

I support algorithm design and empirical analysis

I support wide range of design patterns, procedures

I support effective utilisation of parallel computation

I support multiple platforms
(Linux, MacOS; later: Windows, Chrome OS?)

I web-based UI, component-based architecture

I open source, easy to use & expand

Holger Hoos: Computer-aided algorithm design 39

HAL: High-performance Algorithm Lab
Nell, Fawcett, HH, Leyton-Brown (under review)

I support algorithm design and empirical analysis

I support wide range of design patterns, procedures

I support effective utilisation of parallel computation

I support multiple platforms
(Linux, MacOS; later: Windows, Chrome OS?)

I web-based UI, component-based architecture

I open source, easy to use & expand

Holger Hoos: Computer-aided algorithm design 39

HAL: High-performance Algorithm Lab
Nell, Fawcett, HH, Leyton-Brown (under review)

I support algorithm design and empirical analysis

I support wide range of design patterns, procedures

I support effective utilisation of parallel computation

I support multiple platforms
(Linux, MacOS; later: Windows, Chrome OS?)

I web-based UI, component-based architecture

I open source, easy to use & expand

Holger Hoos: Computer-aided algorithm design 39

HAL: High-performance Algorithm Lab
Nell, Fawcett, HH, Leyton-Brown (under review)

I support algorithm design and empirical analysis

I support wide range of design patterns, procedures

I support effective utilisation of parallel computation

I support multiple platforms
(Linux, MacOS; later: Windows, Chrome OS?)

I web-based UI, component-based architecture

I open source, easy to use & expand

Holger Hoos: Computer-aided algorithm design 39

HAL: High-performance Algorithm Lab
Nell, Fawcett, HH, Leyton-Brown (under review)

I support algorithm design and empirical analysis

I support wide range of design patterns, procedures

I support effective utilisation of parallel computation

I support multiple platforms
(Linux, MacOS; later: Windows, Chrome OS?)

I web-based UI, component-based architecture

I open source, easy to use & expand

Holger Hoos: Computer-aided algorithm design 39

HAL: High-performance Algorithm Lab
Nell, Fawcett, HH, Leyton-Brown (under review)

I support algorithm design and empirical analysis

I support wide range of design patterns, procedures

I support effective utilisation of parallel computation

I support multiple platforms
(Linux, MacOS; later: Windows, Chrome OS?)

I web-based UI, component-based architecture

I open source, easy to use & expand

Holger Hoos: Computer-aided algorithm design 39

HAL 1.0

Holger Hoos: Computer-aided algorithm design 40

HAL 1.0

Holger Hoos: Computer-aided algorithm design 40

HAL 1.0

Holger Hoos: Computer-aided algorithm design 40

HAL 1.0

Holger Hoos: Computer-aided algorithm design 40

Programming by Optimisation (PbO)
HH (work in progress)

Key idea:

I avoid premature, uninformed, possibly detrimental
design choices

I encourage developers to parameterise,
provide functionally equivalent alternatives
 generic programming language extension

I automatically make choices to obtain algorithm / software /
system that performs well in a given application context
 HAL + compute power

Holger Hoos: Computer-aided algorithm design 41

Programming by Optimisation (PbO)
HH (work in progress)

Key idea:

I avoid premature, uninformed, possibly detrimental
design choices

I encourage developers to parameterise,
provide functionally equivalent alternatives
 generic programming language extension

I automatically make choices to obtain algorithm / software /
system that performs well in a given application context
 HAL + compute power

Holger Hoos: Computer-aided algorithm design 41

Programming by Optimisation (PbO)
HH (work in progress)

Key idea:

I avoid premature, uninformed, possibly detrimental
design choices

I encourage developers to parameterise,
provide functionally equivalent alternatives
 generic programming language extension

I automatically make choices to obtain algorithm / software /
system that performs well in a given application context
 HAL + compute power

Holger Hoos: Computer-aided algorithm design 41

Programming by Optimisation (PbO)
HH (work in progress)

Key idea:

I avoid premature, uninformed, possibly detrimental
design choices

I encourage developers to parameterise,
provide functionally equivalent alternatives
 generic programming language extension

I automatically make choices to obtain algorithm / software /
system that performs well in a given application context
 HAL + compute power

Holger Hoos: Computer-aided algorithm design 41

Programming by Optimisation (PbO)
HH (work in progress)

Key idea:

I avoid premature, uninformed, possibly detrimental
design choices

I encourage developers to parameterise,
provide functionally equivalent alternatives
 generic programming language extension

I automatically make choices to obtain algorithm / software /
system that performs well in a given application context
 HAL + compute power

Holger Hoos: Computer-aided algorithm design 41

planner

Holger Hoos: Computer-aided algorithm design 42

planner

design space
of planners

Holger Hoos: Computer-aided algorithm design 42

application context

planner

design space
of planners

Holger Hoos: Computer-aided algorithm design 42

application context

planner

optimised
planner

design space
of planners

Holger Hoos: Computer-aided algorithm design 42

application context

planner

optimised
planner

instance-
based

selector

design space
of planners

Holger Hoos: Computer-aided algorithm design 42

application context

plannerplanner
planner

optimised
planner

parallel
portfolio

instance-
based

selector

design space
of planners

Holger Hoos: Computer-aided algorithm design 42

application context

plannerplanner

optimised
planner

parallel
portfolio

instance-
based

selector

design space
of planners

Holger Hoos: Computer-aided algorithm design 42

Computationally too expensive?

Recent example: Hydra SAT solver (Xu et al. – to appear)

I automated construction of the solver
(using ParamILS, SATzilla):
≈ 70 CPU days

I wall-clock time on 10 CPU cluster:
≈ 7 CPU days

I cost on Amazon Elastic Compute Cloud (EC2):
20.16 USD

I 20.16 USD pays for ...

I 0:38 hours of average software engineer
I 2:45 hours at minimum wage

Holger Hoos: Computer-aided algorithm design 43

Computationally too expensive?

Recent example: Hydra SAT solver (Xu et al. – to appear)

I automated construction of the solver
(using ParamILS, SATzilla):
≈ 70 CPU days

I wall-clock time on 10 CPU cluster:
≈ 7 CPU days

I cost on Amazon Elastic Compute Cloud (EC2):
20.16 USD

I 20.16 USD pays for ...

I 0:38 hours of average software engineer
I 2:45 hours at minimum wage

Holger Hoos: Computer-aided algorithm design 43

Computationally too expensive?

Recent example: Hydra SAT solver (Xu et al. – to appear)

I automated construction of the solver
(using ParamILS, SATzilla):
≈ 70 CPU days

I wall-clock time on 10 CPU cluster:
≈ 7 CPU days

I cost on Amazon Elastic Compute Cloud (EC2):
20.16 USD

I 20.16 USD pays for ...

I 0:38 hours of average software engineer
I 2:45 hours at minimum wage

Holger Hoos: Computer-aided algorithm design 43

Computationally too expensive?

Recent example: Hydra SAT solver (Xu et al. – to appear)

I automated construction of the solver
(using ParamILS, SATzilla):
≈ 70 CPU days

I wall-clock time on 10 CPU cluster:
≈ 7 CPU days

I cost on Amazon Elastic Compute Cloud (EC2):
20.16 USD

I 20.16 USD pays for ...

I 0:38 hours of average software engineer

I 2:45 hours at minimum wage

Holger Hoos: Computer-aided algorithm design 43

Computationally too expensive?

Recent example: Hydra SAT solver (Xu et al. – to appear)

I automated construction of the solver
(using ParamILS, SATzilla):
≈ 70 CPU days

I wall-clock time on 10 CPU cluster:
≈ 7 CPU days

I cost on Amazon Elastic Compute Cloud (EC2):
20.16 USD

I 20.16 USD pays for ...

I 0:38 hours of average software engineer
I 2:45 hours at minimum wage

Holger Hoos: Computer-aided algorithm design 43

Computer-aided Algorithm Design ...

I leverages computational power to construct
better algorithms

I liberates human designers from boring, menial tasks and
lets them focus on higher-level design issues

I enables effective exploration of larger design spaces

I facilitates principled design of heuristic algorithms

I profoundly changes how we build and use algorithms

Holger Hoos: Computer-aided algorithm design 44

Computer-aided Algorithm Design ...

I leverages computational power to construct
better algorithms

I liberates human designers from boring, menial tasks and
lets them focus on higher-level design issues

I enables effective exploration of larger design spaces

I facilitates principled design of heuristic algorithms

I profoundly changes how we build and use algorithms

Holger Hoos: Computer-aided algorithm design 44

Computer-aided Algorithm Design ...

I leverages computational power to construct
better algorithms

I liberates human designers from boring, menial tasks and
lets them focus on higher-level design issues

I enables effective exploration of larger design spaces

I facilitates principled design of heuristic algorithms

I profoundly changes how we build and use algorithms

Holger Hoos: Computer-aided algorithm design 44

Computer-aided Algorithm Design ...

I leverages computational power to construct
better algorithms

I liberates human designers from boring, menial tasks and
lets them focus on higher-level design issues

I enables effective exploration of larger design spaces

I facilitates principled design of heuristic algorithms

I profoundly changes how we build and use algorithms

Holger Hoos: Computer-aided algorithm design 44

Computer-aided Algorithm Design ...

I leverages computational power to construct
better algorithms

I liberates human designers from boring, menial tasks and
lets them focus on higher-level design issues

I enables effective exploration of larger design spaces

I facilitates principled design of heuristic algorithms

I profoundly changes how we build and use algorithms

Holger Hoos: Computer-aided algorithm design 44

Acknowledgements

Collaborators:

I Domagoj Babic

I Alex Devkar

I Chris Fawcett

I Frank Hutter

I Chris Nell

I Eugene Nudelman

I Alena Shmygelska

I Chris Thachuk

I James Styles

I Lin Xu

I Thomas Bartz-Beielstein
(FH Köln)

I Marco Chiarandini
(University of Southern Denmark)

I Alan Hu

I Kevin Leyton-Brown

I Kevin Murphy

I Yoav Shoham
(Stanford University)

I Thomas Stützle
(Université Libre de Bruxelles)

Research funding:

I NSERC, MITACS, CFI

I IBM, Actenum Corp.

Computing resources:

I Arrow, BETA, ICICS clusters

I WestGrid

Holger Hoos: Computer-aided algorithm design 45

