
From Automated Verification
to Automated Design

Moshe Y. Vardi

Rice University



Verification

Model Checking :

• Given: Program P , Specification ϕ.

• Task: Check that P models ϕ

Success :

• Algorithmic methods: temporal specifications
and finite-state programs.

• Also: Certain classes of infinite-state programs

• Tools: SMV, SPIN, SLAM, etc.

• Impact on industrial design practice is increasing.

Problems :

• Designing P is hard and expensive.

• Redesigning P when P does not model ϕ is hard
and expensive.

1



Automated Design

Basic Idea :

• Start from spec ϕ, design P such that P models
ϕ.

Advantage:

– No verification
– No re-design

• Derive P from ϕ algorithmically.

Advantage:

– No design

In essenece: Declarative programming taken to
the limit.

Harel, 2008: “Can Programming be Liberated,
Period?”

2



Program Synthesis

The Basic Idea : Mechanical translation
of human-understandable task specifications
to a program that is known to meet the
specifications.

Deductive Approach (Green, 1969, Waldinger and
Lee, 1969, Manna and Waldinger, 1980)

• Prove realizability of function,
e.g., (∀x)(∃y)(Pre(x) → Post(x, y))

• Extract program from realizability proof.

Classical vs. Temporal Synthesis :

• Classical: Synthesize transformational programs

• Temporal: Synthesize programs for ongoing
computations (protocols, operating systems,
controllers, etc.)

3



Temporal Logic

Linear Temporal logic (LTL): logic of temporal
sequences (Pnueli, 1977)

Main feature: time is implicit

• next ϕ: ϕ holds in the next state.

• eventually ϕ: ϕ holds eventually

• always ϕ: ϕ holds from now on

• ϕ until ψ: ϕ holds until ψ holds.

Semantics

• π,w |= next ϕ if w • -•
ϕ

- • -• -•. . .

• π,w |= ϕ until ψ if w •
ϕ

-•
ϕ

- •
ϕ

-•
ψ

-•. . .

4



Examples

• always not (CS1 and CS2): mutual exclusion
(safety)

• always (Request implies eventually Grant):
liveness

• always (Request implies (Request until Grant)):
liveness

5



Synthesis of Ongoing Programs

Spec: Temporal logic formulas

Early 1980s : Satisfiability approach
(Wolper, Clarke+Emerson, 1981)

• Given: ϕ

• Satisfiability: Construct model M of ϕ

• Synthesis: Extract P from M .

Example : always (odd→ next ¬odd)∧
always (¬odd→ next odd)

odd
-

� odd
�
�

�
�

�
�

�
�

6



Reactive Systems

Reactivity : Ongoing interaction with environment
(Harel+Pnueli, 1985), e.g., hardware, operating
systems, communication protocols, etc. (also, open
systems).

Example : Printer specification –
Ji - job i submitted, Pi - job i printed.

• Safety: two jobs are not printed together
always ¬(P1 ∧ P2)

• Liveness: every jobs is eventually printed
always

∧2
j=1(Ji → eventually Pi)

7



Satisfiability and Synthesis

Specification Satisfiable? Yes!

Model M : A single state where J1, J2, P1, and P2

are all false.

Extract program from M? No!

Why? Because M handles only one input
sequence.

• J1, J2: input variables, controlled by environment

• P1, P2: output variables, controlled by system

Desired : a system that handles all input
sequences.

Conclusion : Satisfiability is inadequate for synthesis.

8



Realizability

I: input variables
O: output variables

Game:

• System: choose from 2O

• Env: choose from 2I

Infinite Play :
i0, i1, i2, . . .
00, 01, 02, . . .

Infinite Behavior : i0 ∪ o0, i1 ∪ o1, i2 ∪ o2, . . .

Win : Behavior satisfies spec.

Specifications : LTL formula on I ∪O

Strategy : Function f : (2I)∗ → 2O

Realizability : Abadi+Lamport+Wolper, 1989
Pnueli+Rosner, 1989
Existence of winning strategy for specification.

Desideratum : A universal plan!

9



Church’s Problem

Church, 1957: Realizability problem wrt specification
expressed in MSO (monadic second-order theory of
one successor function)

Büchi+Landweber, 1969:

• Realizability is decidable.

• If a winning strategy exists, then a finite-state
winning strategy exists.

• Realizability algorithm produces finite-state strategy.

Rabin, 1972: Simpler solution via Rabin tree
automata.

Question : LTL is subsumed by MSO, so what
did Pnueli and Rosner do?
Answer : better algorithms!

10



Strategy Trees

Infinite Tree : D∗ (D - directions)

• Root: ε

• Children: xd, x ∈ D∗, d ∈ D

Labeled Infinite Tree : τ : D∗ → Σ

Strategy : f : (2I)∗ → 2O

Rabin’s insight: A strategy is a labeled tree with
directions D = 2I and alphabet Σ = 2O.

Example : I = {p}, O = {q}

q
@

@
@

@

�
�

�
�

pp

q q
@

@
@

@

�
�

�
�

@
@

@
@

�
�

�
�

Winning : Every branch satisfies spec.

11



Rabin Automata on Infinite k-ary Trees

A = (Σ, S, S0, ρ, α)

• Σ: finite alphabet

• S: finite state set

• S0 ⊆ S: initial state set

• ρ: transition function

– ρ : S × Σ → 2Sk

• α: acceptance condition

– α = {(G1, B1), . . . , (Gl, Bl)}, Gi, Bi ⊆ S

– Acceptance: along every branch, for some
(Gi, Bi) ∈ α, Gi is visited infinitely often, and
Bi is visited finitely often.

12



Emptiness of Tree Automata

Emptiness: L(A) = ∅

Emptiness of Automata on Finite Trees : PTIME
test (Doner, 1965)

Emptiness of Automata on Infinite Trees : Difficult

• Rabin, 1969: non-elementary

• Hossley+Rackoff, 1972: 2EXPTIME

• Rabin, 1972: EXPTIME

• Emerson, V.+Stockmeyer, 1985: In NP

• Emerson+Jutla, 1991: NP-complete

13



Rabin’s Realizability Algorithm

REAL(ϕ):

• Construct Rabin tree automaton Aϕ that accepts
all winning strategy trees for spec ϕ.

• Check non-emptiness of Aϕ.

• If nonempty, then we have realizability; extract
strategy from non-emptiness witness.

Complexity : non-elementary

Reason: Aϕ is of non-elementary size for spec ϕ in
MSO.

14



Post-1972 Developments

• Pnueli, 1977: Use LTL rather than MSO as spec
language.

• V.+Wolper, 1983: Elementary (exponential)
translation from LTL to automata.

• Safra, 1988: Doubly exponential construction of
tree automata for strategy trees wrt LTL spec
(using V.+Wolper).

• Rosner+Pnueli, 1989: 2EXPTIME realizability
algorithm wrt LTL spec (using Safra).

• Rosner, 1990: Realizability is 2EXPTIME-
complete.

15



Standard Critique

Impractical! 2EXPTIME is a horrible complexity.

Response :

• 2EXPTIME is just worst-case complexity.

• 2EXPTIME lower bound implies a doubly
exponential bound on the size of the smallest
strategy; thus, hand design cannot do better in
the worst case.

16



Classical AI Planning

Deterministic Finite Automaton (DFA)
A = (Σ, S, s0, ρ, F )
• Alphabet: Σ
• States: S
• Initial state: s0 ∈ S

• Transition function: ρ : S × Σ → S

• Accepting states: F ⊆ S

Input word : a0, a1, . . . , an−1 Run : s0, s1, . . . , sn

• si+1 = ρ(si, ai) for i ≥ 0

Acceptance : sn ∈ F .

Planning Problem : Find word leading from s0 to F .

• Realizability: L(A) 6= ∅

• Program: w ∈ L(A)

17



Dealing with Nondeterminism

Nondeterministic Finite Automaton (NFA)
A = (Σ, S, s0, ρ, F )
• Alphabet: Σ
• States: S
• Initial state: s0 ∈ S

• Transition function: ρ : S × Σ → 2S

• Accepting states: F ⊆ S

Input word : a0, a1, . . . , an−1 Run : s0, s1, . . . , sn

• si+1 ∈ ρ(si, ai) for i ≥ 0

Acceptance : sn ∈ F .

Planning Problem : Find word leading from s0 to F .

• Realizability: L(A) 6= ∅

• Program: w ∈ L(A)

18



Automata on Infinite Words

Nondeterministic Büchi Automaton (NBW)
A = (Σ, S, s0, ρ, F )
• Alphabet: Σ
• States: S
• Initial state: s0 ∈ S

• Transition function: ρ : S × Σ → 2S

• Accepting states: F ⊆ S

Input word : a0, a1, . . .

Run : s0, s1, . . .

• si+1 ∈ ρ(si, ai) for i ≥ 0

Acceptance : F visited infinitely often

Motivation :

• characterizes ω-regular languages

• equally expressive to MSO (Büchi 1962)

• more expressive than LTL

19



Examples

((0 + 1)∗1)ω:

- •
6

� �
0

1-
�

0
•��

��
6

� �
1

– infinitely many 1’s

(0 + 1)∗1ω:

- •
6

� �
0, 1

1
- •��

��
6

� �
1

– finitely many 0’s

20



Infinitary Planning

Planning Problem : Given NBWA = (Σ, S, s0, ρ, F ),
find infinite word w ∈ L(A)

From Automata to Graphs: GA = (S,EA),
EA = {(s, t) : t ∈ ρ(s, a) for some a ∈ Σ}.
Lemma : L(A) 6= ∅ iff there is a a state f ∈ F

such that GA contains a path from s0 to f and a
cycle from f to itself.
Corollary : L(A) 6= ∅ iff there are finite words
u, v ∈ Σ∗ such that uvω ∈ L(A).

Bonus : Finite-state program.

Synthesized Program : Do u and then repeatedly
do v.

21



Temporal Logic vs. Büchi Automata

Paradigm : Compile high-level logical specifications
into low-level finite-state language

The Compilation Theorem : V.-Wolper, 1983

Given an LTL formula ϕ, one can construct an
NBW Aϕ such that a computation σ satisfies ϕ
if and only if σ is accepted by Aϕ. Furthermore,
the size of Aϕ is at most exponential in the
length of ϕ.

always eventually p:

- •
6

� �
p

p-
�

p
•��

��
6

� �
p

– infinitely many p’s

eventually always p:

- •
6

� �
p, p

p
- •��

��
6

� �
p

– finitely many p’s

22



LTL Planning

• Input LTL formula ϕ

• Planning Problem: Find word w |= ϕ

• Realizability: ϕ is satisfiable.

• Solution: Solve infinitary planning with Aϕ

23



Synthesis of Reactive Systems

Game Semantics : view an open system S as
playing a game with an adversarial environment E,
with the specifications being the winning condition.

DFA Games :
• S choose output value a ∈ Σ
• E choose input value b ∈ ∆
• Round: S and E set their values
• Play: word in (Σ × ∆)∗

• Specification: DFA A over the alphabet Σ×∆
• S wins when play is accepted by by A.

Realizability and Synthesis :

• Strategy for S – τ : ∆∗ → Σ

• Realizability – exists winning strategy for S

• Synthesis – obtain such winning strategy.

24



Solving DFA Games

A = (Σ × ∆, S, s0, ρ, F )

Define wini(A) ⊆ S inductively:
• win0(A) = F

• wini+1(A) = wini(A)∪
{s : (∃a ∈ Σ)(∀b ∈ ∆)ρ(s, (a, b)) ∈ wini(A)}

Lemma : S wins the A game iff s0 ∈ win∞(A).

Bottom Line : linear-time, least-fixpoint algorithm
for DFA realizability. What about synthesis?

25



Transducers

Transducer : a finite-state representation of a
strategy– deterministic automaton with output
T = (∆,Σ, Q, q0, α, β)
• ∆: input alphabet
• Σ: output alphabet
• Q: states
• q0: initial state
• α : S × ∆ → S: transition function
• β : S → Σ: output function

Key Observation : A transducer representing a
winning strategy can be extracted from
win0(A), win1(A), . . .

26



Reachability Games

Game Graphs : G = (V0, V1, E, vs,W )
• E ⊆ (V0 × V1) ∪ (V1 × V0)
• vs: start node
• W ⊆ V0 ∪ V1: winning set
• Player 0 moves from V0, Player 1 moves from
V1.
• Player 0 wins: reach W .

Fact : Reachability games can be solved in linear
time –least fixpoint algorithm

Consequence : realizability and synthesis

27



NFA Games

NFA Games :
• S choose output value a ∈ Σ
• E choose input value b ∈ ∆
• Round: S and E set their variables
• Play: word in (Σ × ∆)∗

• Specification: NFA A over the alphabet Σ×∆
• S wins when play is accepted by by A.

Solving NFA Games : Basic mismatch between
nondeterminism and strategic behavior.

• Nondeterministic automata have perfect foresight.

• Strategies have no foresight.

Conclusion : Determinize A and then solve.

28



NBW Games

NBW Games :
• S choose output value a ∈ Σ
• E choose input value b ∈ ∆
• Round: S and E set their variables
• Play: infinite word in (Σ × ∆)ω

• Specification: NBWA over the alphabet Σ×∆
• S wins when infinite play is accepted by by A.

Resolving the mismatch : Determinize A

LTL Games :

• Specification: LTL formula ϕ

• Solution: Construct Aϕ and determinize.

History :

• Church, 1957: problem posed (for MSO)

• Büchi-Landweber, 1969: decidability shown

• Rabin, 1972: solution via tree automata

29



Determinization

Key Fact (Landweber, 1969): Nondeterministic
Büchi automata are more expressive than
deterministic Büchi automata.

Example : (0 + 1)∗1ω:

- •
6

� �
0, 1

1
- •��

��
6

� �
1

– finitely many 0’s

McNaughton, 1966: NBW can be determinized
using more general acceptance condition – blow-up
is doubly exponential.

30



Parity Automata

Deterministic Parity Automata (DPW)
A = (Σ, S, s0, ρ,F)
• F = (F1, F2, . . . , Fk) - partition of S.
• Parity index: k
• Acceptance: Least i such that Fi is visited
infinitely often is even.

Example : (0 + 1)∗1ω

- ℓ
6

� �
0

1-
�

0
r

6

� �
1

– finitely many 0’s

Parity condition: ({ℓ}, {r})

Safra, 1988: NBW with n states can be translated
to DPW with nO(n) states and index O(n).

31



Parity Games

Game Graphs : G = (V0, V1, E, vs,W)
• E ⊆ (V0 × V1) ∪ (V1 × V0)
• vs: start node
• W ⊆ V0 ∪ V1: winning set
• Player 0 moves from V0,
Player 1 moves from V1.
• W = (W1,W2, . . . ,Wk) – partition of V0 ∪ V1

• Play 0 wins: least i such that Wi is visited
infinitely often is even.

Solving Parity Games : complexity

• Jurdzinski, 1998: UP∩co-UP

• Jurdzinski, 2000: nO(k)

• Jurdzinski+Petterson+Zwick, 2000: nO(
√

n)

Open Question : In PTIME?

32



LTL Synthesis

Algorithm for LTL Synthesis :
• Convert specification ϕ to NBW Aϕ

(exponential blow-up)
• Convert NBW Aϕ to DPW Ad

ϕ (exponential
blow-up)
• Solve parity game for Ad

ϕ (exponential)

Pnueli-Rosner, 1989: LTL realizability and synthesis
is 2EXPTIME-complete.

• Transducer: finite-state program with doubly
exponentially many states (exponentially many
state variables)

33



Theory, Experiment, and Practice

Automata-Theoretic Approach in Practice :

• Mona: MSO on finite words

• Linear-Time Model Checking: LTL on infinite
words

Experiments with Automata-Theoretic Approach :

• Symbolic decision procedure for CTL (Marrero
2005)

• Symbolic synthesis using NBT (Wallmeier-
Hütten-Thomas 2003)

Why no implementation of LTL synthesis?
• NBW determinization is hard in practice: from
9-state NBW to 1,059,057-state DRW (Althoff-
Thomas-Wallmeier 2005)
• NBW determinization is hard in practice: no
symbolic algorithms
• lack of incremental algorithms

2EXPTIME: Should not be an insurmountable
problem.

34



A Safraless Approach

Kupferman-V., 2005:

• Limit search to strategy trees that are
generated by transducers of bounded size

– Existence of bounded-size transducers
follows from the Safraful approach

• Construct recurrence games that are
generated by bounded-size transducers

• Solve recurrence games

Crux : focus on subset of strategies

• No determinization

• No parity games

35



Recurrence Games

Game Graphs : G = (V0, V1, E, vs,W )
• E ⊆ (V0 × V1) ∪ (V1 × V0)
• vs: start node
• W ⊆ V0 ∪ V1: winning set
• Player 0 moves from V0,
Player 1 moves from V1.
• Player 0 wins: infinitely many visits to W .

Fact : Recurence games can be solved in quadratic
time– greatest fixpoint of reachability.

Consequence : reachability and synthesis.

36



Safraless vs. Safraful

Question : Is the new approach practical?

Answer : Experimentation needed!

Promise:

• Approach shown practical (after optimization) for
Büchi complementation

• Symbolic approach possible

• First implementation report in FMCAD’06 (Jobstmann-
Bloem)

37



Incremental Synthesis

Basic Weakness of Synthesis : full specifications
required to get started – unrealistic!

• Specifications evolve!

Incremental Synthesis : Suppose we synthesized
programs for specifications ϕ and ψ, can we get
programs for ϕ ∧ ψ without starting from scratch.

Kupferman-Piterman-V., 2006: Use realizability
proofs for ϕ and ψ as starting point for realizability
testing and synthesis for ϕ ∧ ψ.

38



Discussion

Question : Can we hope to reduce a 2EXPTIME-
complete approach to practice?

Answer :

• Worst-case analysis is pessimistic.

– Mona solves nonelementary problems.

– SAT-solvers solve huge NP-complete problems.

– Model checkers solve PSPACE-complete problems.

– Doubly exponential lower bound for program
size.

• We need algorithms that blow up only on hard
instances

• Algorithmic engineering is needed.

39



Verification and Planning

Some Crossfertilization :

• From planning to verification: bounded model
checking

• From verification to planning: OBDDs, temporal
goals

More collaboration needed!

40


