Robotic Agents for Disaster Response Robotics

Daniele Nardi

Dipartimento di Informatica e Sistemistica nardi@dis.uniroma1.it http://labrococo.dis.uniroma1.it

Basic Terminology

Rescue robots serve as extensions of responders into a disaster, providing video and other sensory data about the situation

Search and Rescue Robotics Handbook of Robotics

- RESCUE is indeed SEARCH and RESCUE (SAR)
- RESCUE ROBOTs are SEARCH ROBOTS
- Hence: DISASTER RESPONSE ROBOTICS
- URBAN SAR (USAR) specific to building collapse

Disasters

Natural

- <u>Earthquakes</u>
- Volcanos
- <u>Mud slides</u>
- Floodings

Tornados

Hurricanes

Forest Fires (?)

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

Man made

- Nuclear/ Chemical
- Bacteriological
- Mines
- Oil wells

- Tunnel
 Subway
 Building collapses (due)
 - to many causes)

L'Aquila earthquake (April 09)

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

SAPIENZA Università di Roma

Rescue Robotics Tasks

SAR

- Search
- Exploration
- Reconnaissance
- Mapping

Logistics

- Network connectivity
- Transportation support

USAR specific

- Rubble removal / escavation
- Structural inspection

Medical assistance

- In situ medical assessment and intervention
- Medically sensitive extrication and evacuation of casualties

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

Ground Rescue Robots

- Snakes
- Legged
- Climbing

- Other concepts
- Tracked
- Wheeled

Toronto, AAMAS/ICAPS

Satoshi Tadokoro operates the Active Scope Camera, an optic robot that inches along like a suake.

Water Rescue Robots

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

Surface

Underwater

Toronto, AAMAS/ICAPS

14-05-2010

Aerial Rescue Robots

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

SAPIENZA UNIVERSITÀ DI ROMA

Wheeled Robots

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

Asguard

Toronto, AAMAS/ICAPS

14-05-2010

Tracked robots

Bomb disposal robots are quite "popular" In (some US regions) every county has 1 ore more robots In use up to 3 times a week

- Hard to use in teleoperation
- Heavy
- Limited mobility
- Slow
- Not very effective for SAR

Tracked Robots: Kenaf

- 3D odometry
- Navigation support
- Automatic flipper control
- 3D Mapping LRF

Tracked Robots: Lurker

- Cheap mobile base (Tarantula)
- Pose tracking
- Complex autonomous behaviours
- Real time elevation map

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

Equipment for Rescue Robots

Sensors

Communication

- Vision/Omni/Stereo
 Cable
- Distance (Laser)
- LIDAR Swiss LRF
- Inertial
- GPS
- Thermal sensors
- CO2/gas/bio/X
- Audio

- Wireless Standard/Ad hoc
- Dedicated image transmission
- Ad hoc networking
- Stigmergic (through RFIDs)

Interaction devices

- PC
- Hand-held devices
- Googles
- Wii-mote
- Audio/Speech

Although prevention is much more effective than cure ...

- a lot is needed, in different fields, but for AAMAS and ICAPS Autonomous Behaviour is the key issue:
- Communication failures
- Not under operator's view
- Better performance
- Deployment of several robots

Tasks for rescue robots

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

SAR

- Search
- •Exploration
- Reconnaissance
- •Mapping

Robot Capabilities

- Navigation
- Localization and mapping
- •Object/target/victim detection
- Coordination and cooperation

All started because of RoboCup

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

Padova 2003, SPQR @ RoboCup Rescue

Toronto, AAMAS/ICAPS

14-05-2010

SIED LabSistemi Intelligenti
per l'Emergenza e la
Difesa Civile

DIPARTIMENTO DI INFORMATICA e Sistemistica Antonio Ruberti

Mission: development of intelligent systems for emergency and civil defense

- **Research Issues:** autonomous systems for Urban Search and Rescue
- Agent coordination in simulated emergency scenarios
- Search (& Rescue) Robots

Istituto Superiore Antincendi National Fire Department

Disaster Response Robots

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

Simulation of emergency scenarios

- Multi Agent Modeling (Foligno)
- Simulation of operation procedures

Multi Robot ModelingSystem test& development

14-05-2010

(Egocentric) Research survey

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

- Plan representation
- Contextual kr&r
- Teams of robots
 - Situation Awareness
 - Human Robot Interaction
- Benchmarking

Robot actions

- Representation matters!
- → Sensing
- Actions Duration
- → Concurrency
- Interrupts
- Coordination
- Monitoring execution matters!
- Reactiveness
- Goal driven

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

Petri Net Plans (PNP)

Multi-Robot PNP

- Centralized Design
 - Action Synchronization
 - Joint Actions (Joint Intentions Theory)
- Automated Decomposition & Distributed Execution
- PN-based analysis for Single/Multi-Robot PNP

Joint Intentions in PNPs

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

int

Execution Monitoring

sigma=3

sigma=4 sigma=5 sigma=6

0.25

0.2

0.15

0.1

0.05

- Time is critical! **→**
- Uncertainty in duration of actions →
 - \rightarrow => Probabilistic representation
- Reasoning of overall probability of → success

Semantic Knowledge and Symbol Grounding

Symbolic representations:

- more comfortable for humans
- improve human-robot awareness
- enhance human-robot interaction

Semantic knowledge requires:

- explicit representations (ontology)
- **grounding** the symbols used with real objects the environment

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

Pagina 26

Context

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

Mapping: Scan Matching & RFIDs

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

Mapping, **Navigation and Exploration**

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

Sapienza UNIVERSITÀ DI ROMA

Module	Parameter	Values low, medium, high RKT, DWA	
Navigation	MAX_SPEED MOTION_PLANNER		
Mapping MAPPING_MODE SCAN_MATCH		static, dynamic, off on, off	

Contextual Variable	Meaning	
cluttered	robot is in a cluttered area	
rough	robot is in a rough terrain	
big_ramp	robot is approaching or on a big ramp	
ramp	robot is approaching or on a small ramp	
dynamic	robot is in an area with dynamic obstacles	
rotating	robot is rotating	
DWA_stalled	robot is stalled with DWA motion planner	
RKT_stalled	robot is stalled with RKT motion planner	

Contextual Rules

IF cluttered OR ramp OR rough THEN MAX_SPEED = low IF big_ramp THEN MAX_SPEED = medium IF dynamic THEN MAX_SPEED = medium IF dynamic THEN MAPPING_MODE = dynamic IF cluttered THEN MOTION_PLANNER = RKT IF cluttered THEN SCAN_MATCH = off IF big_ramp AND rotating THEN SCAN_MATCH = on IF ramp THEN MAPPING_MODE = off IF ramp OR big_ramp THEN SCAN_MATCH = off IF DWA_stalled THEN MOTION_PLANNER = RKT IF RKT_stalled THEN MOTION_PLANNER = DWA IF true THEN SCAN_MATCH = on IF true THEN MAPPING_MODE = static IF true THEN MOTION_PLANNER = DWA IF true THEN MAX_SPEED = high

14-05-2010

Multi-robot Teams for disaster response robotics

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

- Multiple robots: better performance and robustness
 - Cooperative Situation Awareness
 - Cooperative Search and Exploration
- Multi-Robot ≠ Multi-Agent
 - Partial knowledge
 - Perception noise
 - Communication constraints
 - ... coordination
 - ... operators/robots ratio

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

Cooperative Perception

• Perception is a bottleneck

- Dynamic Environment
- Many agents
- Situation awareness

NOT only ROBOTS

- 1. Single-agent Situation Assessment using ontology classification
- 2. Distributed Situation Assessment with simple events
- 3. Distributed Situation Assessment with justifications

HRI for Multi Robot

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

Single Operator / Multi Robot

Design as result of experiments

Adjustable Autonomy

Egocentric and allocentric views

Video Feedback

Remote Control

Tidooton tor, esta Mazadi GaAPS

19-05-2010

Pagina 33

Task oriented benchmarking

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

(Steps) towards:

Benchmarking individual tasks

Navigation/Mapping/HRI

Benchmarking missions:

- Simulation
- Competitions
- Rescue robotics exercises

Benchmarking not provided by product developers!

Benchmarking navigation

MoVeME is a framework to evaluate motion systems in terms of obstacle avoidance, path-planning, motion planning (but also mapping and localization)

Benchmarks *and* performance metrics specific to important features for end-users

- Examples (rescue missions)
 - Success (task metric)
 - Accuracy (task metric)
 - Time (task metric)
 - Curvature Change (trajectory metric)
 - Risk (trajectory metric)

Benchmarking interfaces

DIPARTIMENTO DI INFORMATICA e Sistemistica Antonio Ruberti

Manufacture 27 Teleficiture Get way pair Send Ideal and a dailage of Lovel Bragerian No. Collinger Pro-

Mobile interfaces for mobile operators

Tradeoff mobility /quality of display

Cooperation among remote and in situ operator

14-05-2010

SoA benchmarking and Performance Evaluation

- Fancy mobile platform
- Powerful sensors
- Best SLAM
- Super Navigation
- Optimal Exploration
- Faboulous Object Detection
- Wonderful HRI

But, ... rescue robots get stuck !!!

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

Untitler

SAPIENZA UNIVERSITÀ DI ROMA

Unified System for Automation and Robot Simulation

3D rendering with UT3 game engine

USARSim Robots and Sensors

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

ersità di Roma

Robots: P2AT, Telemax, AirRobot, AIBO, Forklift, Hummer, Talon, Tarantula, Zerg,...

Sensors: Range Sensor, Range Scanner, Odometry, INS, GPS, RFID, Bumpers, Acoustic, Gripper, Victim Sensor, Camera,...

Images are courtesy of NIST

NIST-RoboCup Rescue Arenas

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

SAPIENZA Università di Roma

NIST

Regional Qualifying Arena

YELLOW ARENA

FOR AUTONOMOUS NAVIGATION AND VICTIM IDENTIFICATION • RANDOM MAZE OF HALLWAYS AND ROOMS • CONTINUOUS PITCH & ROLL RAMPS (15") • DIRECTIONAL VICTIM BOXES WITH AND WITHOUT HOLES

ORANGE ARENA

FOR ROBOTS CAPABLE OF STRUCTURED MOBILITY RANDOM MAZE OF CROSSINGUTOR & ROLL RAMPS (15') STAIRS (45', WITH 20CM RISERE RAMP (45' WITH CARPED) PIPE STEPS (20CM) CONFINED SPACES (50-80 CM UNDER ELEVATED PLOORS) DIRECTIONAL VICTIM BOXES WITH HOLES DNLY

RED AREN/

RANDOM MAZE OF STEPFIELD PALLETS

YELLOW PITCHIROLL RAMPS

RoboCup Competitions

Goal: find victims in a disaster scenario

Rescue arenas from NIST

Two categories in competition

- Autonomy
- Tele-operated

Soon

• flying robots

SAPIENZA Università di Roma

Disaster Response Exercises

• NIST Response Robot Evaluation Exercise #6 (Disaster City, TX, US), March 8-11, 2010

• **C-ELROB (2011)** EU trial for Robotics in security domains, fire brigades, civil protection, and disaster control

Future

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

Disaster response robotics AI Research

- µ-aerial
- Fleets of µ-aerials
- Human Robot Interfaces

- AI on robots
- Prove that knowlegde can "pay off" in Robotics
- Methodologies for evaluation (benchmarking)

Workshop

Benchmarking Intelligent (Multi-)Robot Systems

Acknowledgements

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

. locchi	S. Bahadori	M. Leonetti	A. Jacoff
	D. Bloisi	G. Randelli	A. Kleiner
	D. Calisi	R. Dodds	R. Murphy
A. F G. ⊄ L. № A. \	A. Farinelli	All members of SPQR RoboCup teams All partecipants of	S. Tadokoro
	G. Grisetti		
	L. Marchetti		G. Parisi (VFF)
	A. Valero	Robotics Camps	Papers'
	V. Ziparo	All students and visitors of SIED LaB	Co-authors

Toronto, AAMAS/ICAPS

14-05-2010