Influence-Based Policy Abstraction for Weakly-Coupled Dec-POMDPs

Stefan Witwicki witwicki@umich.edu Ed Durfee durfee@umich.edu

Team Coordination Under Uncertainty

- System composed of weakly-coupled agent-controlled components
- Problem: plan agents' behavior so as to accomplish team objectives

Dec-POMDP

(Decentralized Partially-Observable Markov Decision Process)

- Dec-POMDP is theoretically-appealing model for team coordination
 - decentralized / partial observations

Dec-POMDP

(Decentralized Partially-Observable Markov Decision Process)

- Dec-POMDP is theoretically-appealing model for team coordination
 - decentralized / partial observations
 - outcome uncertainty
 - general, well-defined notion of optimality (reward model)

Motivation

- Dec-POMDP is theoretically-appealing model ...but <u>very</u> challenging to solve!
 - In general, NEXP (\supseteq NP, \neq P) complete \Rightarrow intractable
 - State-of-the-art solution methods have not scaled beyond 3 agents, except by...
 - Disallowing agent *interaction* through the transition and observation model (e.g. TI-DEC-MDPs [Becker *et al*], ND-POMDPs [Nair *et al*, Varakantham *et al*, Kumar *et al*])
 - Restricting agents' *local* behavior (e.g. OC-DEC-MDPs [Beynier *et al*, Marecki *et al*])
 - 3. or Giving up on optimality and near-optimality (e.g. TREMOR [Varakantham *et al*])
- Can we increase quality-bounded agent scalability while still allowing some general form of transition dependence?

Our Contributions

- Identification of exploitable transitiondependent interaction structure
- Characterization of abstract transition influences
- Algorithm for planning/coordinating optimal influences
- Empirical comparison with state-of-the art policy search methods

Dec-POMDP Model

2-stage (Object-Oriented) Dynamic Bayesian Network

Factored Dec-POMDP

Extreme Factoring

- Imagine fully-independent agents, each modeling the world with a single-agent POMDP...
 - → world state is factored into local state feature subsets
 - \rightarrow transitions are factored, and independent
 - → joint observations are factored, and independent
 - → team reward is factored into local rewards

TD-POMDP model

(Transition Decoupled POMDP)

- Explicitly represent interaction
 - via shared features...
 - nonlocal feature n_i
 - controlled by another agent
 - affects subsequent transitions
 of other features in agent *j*'s local
 State
 - → Agents are "transitiondependent", as well as "observation-dependent"

TD-POMDP Benefits

- Explicit representation of transitiondependent interaction features
- Naturally conveys
 - locality of interaction
 - sparseness of interaction
- TD-POMDP well-suited for weakly-coupled problems with sparse interactions

TD-POMDP Benefits

- Explicit representation of transitiondependent interaction features
- Naturally conveys
 - locality of interaction
 - sparseness of interaction
- TD-POMDP well-suited for weakly-coupled problems with sparse interactions

Decoupled Solution Methodology

- best-response search through the joint policy space (e.g., JESP [Nair *et al.*], GOA [Nair *et al.*], CSA [Becker *et al.*], ...)
- Agents compute local policies in response to the policies of their peers

- → Successful for scaling (transition & observation-independent) ND-POMDPs
- \rightarrow Less so for transition-dependent Dec-POMDPs
 - Best-response model unwieldy
 - requires reasoning about other agents' possible observation histories
 - Joint policy space very large

For a potential peer policy...

- Account for influence of peer's planned decisions on own decision-making problem
- Plan own decisions accordingly

Influence

- R7's behavior is only influenced by the likelihood of path A being built by time 3
- SAT1's decisions after time 3 have no impact on R7

- For weakly-coupled problems...
 - Many peer policies map to the <u>same influence</u>
 - For all such policies, the best response will be the same!

Influence-based policy abstraction

TD-POMDP Influence Mechanics

- For TD-POMDP, the *influence* relates to the expected changes of nonlocal feature n_j
 <u>nonlocal features value</u>
- Influence $\Gamma(\pi_i) = \{ Pr(n_j | \cdots) \}$

values on which nonlocal feature value depends

Example: $Pr(path-A-built^{t+1} = T | path-A-built^t = F, t = 2) = 0.8$

TD-POMDP Influence Mechanics

For TD-POMDP, the *influence* relates to the expected changes of nonlocal feature n_j
 <u>nonlocal features value</u>

• Influence
$$\Gamma(\pi_i) = \{ Pr(n_j | \cdots) \}$$

values on which nonlocal feature value depends

Example: $Pr(path-A-built^{t+1} = T | path-A-built^t = F, t = 2) = 0.8$

influence
$$\Gamma_i \longrightarrow best response computation \rightarrow \pi_j^*($$
 best-response policy

- 1) Create POMDP using TD-POMDP *local state* space, *local state* transitions, local observations, and local rewards
- 2) Augment state with variables on which influences depend
- 3) Set transitions of nonlocal features according to influence information

Sufficiency of Influence

• [Proposition 1] To compute consistent best responses, the influence distributions $Pr(n_j | \cdots)$ need only be conditioned on past and present values of shared state features

Sufficiency of Influence

• [Proposition 1] To compute consistent best responses, the influence distributions $Pr(n_j | \cdots)$ need only be conditioned on past and present values of shared state features

← Influence DBN

- For weakly-coupled TD-POMDP problems...
- → local *best-response* model compact
- → the number of parameters needed to represent influences remains small

Influence Space

- Potentially significantly smaller than the policy space
- Optimal Influence \rightarrow Optimal joint policy

Optimal Influence-space Search (OIS)

- Depth-first search of agents' influence settings
 - Agents generate feasible influence settings and corresponding optimal local utilities (using Linear Programming)
 - Pass settings down
 - Pass local values back up

Hypothesis

- OIS has greatest advantage (over conventional policy-space coordination) on problems with...
 - Few interactions
 - Interactions which are highly constrained

Hypothesis 2

Representation of influences using probability distributions enables flexible approximation
 Strategy 1: only consider probability values that are ≥ € from those already found

Conclusions and Future Work

- Transition-Decoupled POMDP model
 - General planning model for weakly-coupled multi-agent system with sparse transition-dependent interactions
 - Explicit representation of interaction features
 - When peer policies are fixed, decouples into **compact optimal local (best-response) model**
- Influence-based Policy Abstraction
 - Influence space potentially significantly smaller than policy space (and no larger!)
 - No loss of solution quality (OIS guarantees optimal joint policy)
 - Agents need not exchange complete policies
 - Accommodates approximation flexibly
- Future Work
 - Empirical Evaluation on problems with varied agent coupling & interaction digraph structure
 - Empirical Comparison with approximate methods
 - Derivation of quality bounds for approximate versions of our algorithm

Thank You

• Questions?