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Team Coordination Under Uncertainty

» System composed of weakly-coupled agent-controlled components

* Problem: plan agents’ behavior so as to accomplish team objectives
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Dec-POMDP

( Decentralized Partially-Observable Markov Decision Process )

 Dec-POMDP is theoretically-appealing model for
team coordination

— decentralized / partial observations

joint tiobservations

dust storm at site B

world state R7 at base

dust storm at site B
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Dec-POMDP

( Decentralized Partially-Observable Markov Decision Process )

 Dec-POMDP is theoretically-appealing model for

team coordination

— decentralized / partial observations

— outcome uncertainty

— general, well-defined notion of optimality (reward model)
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Motivation

* Dec-POMDP is theoretically-appealing model

...but very challenging to solve!
= |n general, NEXP (oNP, #P) complete = intractable

= State-of-the-art solution methods have not scaled beyond 3 agents,
except by...
1. Disallowing agent interaction through the transition and observation model

(e.g. TI-DEC-MDPs [Becker et al], ND-POMDPs [Nair et al, Varakantham et al,
Kumar et all)

2.  Restricting agents’ local behavior
(e.g. OC-DEC-MDPs [Beynier et al, Marecki et al])
3.  or Giving up on optimality and near-optimality
(e.g. TREMOR [Varakantham et al])

 Can we increase quality-bounded agent scalability while still
allowing some general form of transition dependence?



Our Contributions

ldentification of exploitable transition-
dependent interaction structure

Characterization of abstract transition
influences

Algorithm for planning/coordinating optimal
influences

Empirical comparison with state-of-the art
policy search methods



Dec-POMDP Model

current
world state

2-stage (Object-Oriented) Dynamic Bayesian Network




Factored Dec-POMDP

joint observation team reward
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Extreme Factoring

* Imagine fully-independent
agents, each modeling the
world with a single-agent
POMDRP...

— world state is factored into
local state feature subsets

— transitions are factored, and
independent

— joint observations are
factored, and independent

— team reward is factored into
local rewards

Agent j




TD-POMDP model

( Transition Decoupled POMDP )

* Explicitly represent
Interaction

. e.g. Path-A-Built
via shared features... :
" nonlocal feature n; @
— controlled by another agent :'g::
— affects subsequent transitions  Agent i

of other features in agentj’s local  overla]
local stz
State

— Agents are “transition-
dependent”, as well as

“observation-dependent”

Agent j



TD-POMDP Benefits

e Explicit representation &

of transition- @

dependent interaction Ak
features .

* Naturally conveys local t3
— locality of interaction

— sparseness of e
interaction

e TD-POMDP well-suited agent;
for weakly-coupled
problems with sparse
Interactions




TD-POMDP Benefits

e Explicit representation
of transition-
dependent interaction
features

* Naturally conveys
— locality of interaction

— sparseness of
interaction

e TD-POMDP well-suited
for weakly-coupled
problems with sparse
Interactions

(interaction digraph)



Decoupled Solution Methodology

best-response search through the joint policy space
(e.g., JESP [Nair et al.], GOA [Nair et al.], CSA [Becker et al ], ...)

Agents compute local policies in response to the policies of their peers
peers’

candidate
LI best response

. i m ion
Joint Policy | compuiatio 1 (:
Space

best response
policy

—  Successful for scaling (transition & observation-independent) ND-POMDPs
—  Less so for transition-dependent Dec-POMDPs
= Best-response model unwieldy

= requires reasoning about other agents’ possible observation histories
Joint policy space very large



Best Response

s best response
@ ni i q
computation

For a potential peer policy...

O

7 (: @

* Account for influence of peer’s planned decisions on own
decision-making problem

* Plan own decisions accordingly



Influence

Build Path A
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 R7’s behavior is only influenced by the likelihood of path A being built by time 3

e SAT1’s decisions after time 3 have no impact on R7

be built by
time 2
with

best response mapping

* For weakly-coupled problems...
— Many peer policies map to the same influence

— For all such policies, the best response will be the same!

R7 local policy space




Influence-based policy abstraction

...0f i’s policy on
j’s decision-
making problem

i . mfluence/
p01|tl<.:y influence In best response 7
l abstraction computation j\




TD-POMDP Influence Mechanics

. influence
policy influence
TT; , I
abstraction

* For TD-POMDP, the influence relates to the expected changes of nonlocal
feature nj nonlocal features value

e
Influence I(x;) = [PT (njl )}

values on which nonlocal feature value depends

Example: Pr(path-A-built®™! = T|path-A-built* = F,t = 2)=0.8




TD-POMDP Influence Mechanics

. influence
policy influence
TT; , I
abstraction

* For TD-POMDP, the influence relates to the expected changes of nonlocal
feature nj nonlocal features value

e
Influence I(x;) = [PT (njl )}

values on which nonlocal feature value depends

Example: Pr(path-A-built®™! = T|path-A-built* = F,t = 2)=0.8

influence 77 best response NG T best-response
computation J policy

1) Create POMDP using TD-POMDP local state space, local state transitions,
local observations, and local rewards

2) Augment state with variables on which influences depend
3) Set transitions of nonlocal features according to influence information



Sufficiency of Influence

* [Proposition 1] To compute consistent best responses, the
influence distributions Pr (| -+ ) need only be conditioned
on past and present values of shared state features

< Influence DBN



Sufficiency of Influence

* [Proposition 1] To compute consistent best responses, the
influence distributions Pr(n;| -+ ) need only be conditioned
on past and present values of shared state features

< Influence DBN

* For weakly-coupled TD-POMDP problems...
—> local best-response model compact

— the number of parameters needed to represent influences
remains small



Influence Space

Policy Space

Identical
Influence

* Potentially significantly smaller than the policy
space

* Optimal Influence — Optimal joint policy



Optimal Influence-space Search (OIS)

Depth-first search of

agents’ influence settings ~~  :~ - incomins

u Agents generate feasible influence DBN
settings and corresponding optimal

local utilities (using Linear
Programming)
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Hypothesis

* OIS has greatest advantage (over conventional
policy-space coordination) on problems with...
— Few interactions
— Interactions which are highly constrained
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Separable Bilinear
Programming
[Mostafa et al.] :

for EDI-CR (DEC-MDPs)

, SBP-OIS Runtime Comparison
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I/ Single nonlocal feature, dependent on shared time f
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SPIDER, implementation
for specialized transition-
dependent Dec-POMDPs
[Marecki, Varakantham et

al.]
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* 25 problems |_/\

* 2agents

e 4 tasks each X—axis:

e 2 outcomes per task
e T=30time units
* No “wait” action

T—window size (ef fecting task)

T

e 25 problems

* 2agents

* 3 tasks each

e 3 outcomes per task
e T=17time units




Hypothesis 2

* Representation of influences using probability
distributions enables flexible approximation

Strategy 1: only consider probability values that

are > € from those already found



Optimal solution for 4-agent

transition-dependent 1g a n d A p p rOXi m ati O n

Dec-POMDP problem!
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approximation!




Conclusions and Future Work

* Transition-Decoupled POMDP model
= General planning model for weakly-coupled multi-agent system with sparse
transition-dependent interactions
= Explicit representation of interaction features
= When peer policies are fixed, decouples into compact optimal local (best-response) model

* Influence-based Policy Abstraction
= |nfluence space potentially significantly smaller than policy space (and no larger!)
= No loss of solution quality (OIS guarantees optimal joint policy)
= Agents need not exchange complete policies
=  Accommodates approximation flexibly

* Future Work
= Empirical Evaluation on problems with varied agent coupling & interaction digraph structure
=  Empirical Comparison with approximate methods
= Derivation of quality bounds for approximate versions of our algorithm



Thank You

e Questions?



