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TFs can be present in active/inactive state

measure of active TFs is very hard

gene expression levels (mRNA) easy to measure
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Basic problem

Consider an ODE model of transcription dynamics

dxi (t)

dt
= Aµ+ bi − λixi (t)

Given time course observations of the expression levels of the
target genes xi , infer the profile of the transcription factor f
and the model parameters θi , bi and λi

Problem originally considered by Barenco et al., and then
Lawrence et al., Khanin et al., Rogers et al.,...
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Network motifs

Single-Input Motif

SIM
Dense Overlapping Regulons

DOR
Feed-Forward Loop

FFL

Barenco et al., 2006
Rogers et al., 2006

Lawrence et al., 2006
Sanguinetti et al., 2009

Opper and Sanguinetti, 2010 Nobody so far...
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Feed-forward loop (FFL) network motif

µ master transcription factor

x slave transcription factor

y target gene

FFL can act as a biological filter

Figure: FFL network motif
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FFL network motifs

OR-gate FFL

dx(t)

dt
= A1µ(t) + b1 − λ1x(t)

dy(t)

dt
= Aµ(t) + b − λy(t) + A2Θ[x(t)− c]

AND-gate FFL

dx(t)

dt
= A1µ(t) + b1 − λ1x(t)

dy(t)

dt
= Aµ(t)Θ[x(t)− c] + b − λy(t)

Θ[x(t)− c] represents the Heaviside step function (it is 1 if x(t) > c, zero otherwise)
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What we are interested in

Given microarray observations x̂ and ŷ at discrete time points, the
problems are

state inference: when does TF is active and inactive?

parameters estimation (A, b, λ,A1, b1, λ1,A2, c)

model selection: AND gate FFL, OR gate FFL, mixture?
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Bayesian inference framework

Prior distribution

The driving process µ(t) is modelled as a two-states Markov
jump process, also known as a telegraph process
Given transition rates f0,1(t) for the process, the probability
p1(t) of µ(t) = 1 at a given time is given by the following
Master equation

dp1 (t)

dt
= −(f1 + f0)p1 (t) + f1 (t) (1)

Likelihood

observations corrupted by Gaussian noise

p(x̂i |xi ) = N (x̂i |xi , σxi ) p(ŷi |yi ) = N (ŷi |yi , σyi )
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Variational approach

In principle, the posterior process can be obtained via Bayes’
theorem

ppost(µ0:T |x̂ , ŷ) =
1

Z
p(x̂ |µ0:T ) p(ŷ |µ0:T , x̂) pprior (µ0:T |f0,1)

We will approximate the posterior with a Markov process

We compute the Kullback-Leibler (KL) divergence between
the posterior process and an approximating telegraph
(Markov) process q (µ|g0,1)

KL [q‖ppost ] = lnZ + KL
[
q‖pprior

]
−

N∑
j=1

Eq
[
ln p

(
x̂j |x

(
tj
))

+ ln p
(
ŷj |y

(
tj
))]
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Variational approximation

First and second moment for x and y can be calculated by
solving iteratively a system of ODEs

We still need to calculate some non trivial expectations under
the approximating distribution q:

〈Θ[x(s)− c]〉

〈Θ[x(s)− c]µ(t)〉

〈Θ[x(s)− c]Θ[x(t)− c]〉
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Assumptions

〈Θ[x(s)− c]〉 = P(x(t) > c) =
∫∞
c p(x(t))dx(t)

where p(x(t)) ∼ N (x | 〈x(t)〉 ,
〈
x(t)2

〉
− 〈x(t)〉2)

〈Θ[x(s)− c]µ(t)〉 ∼ 〈Θ[x(s)− c]〉 〈µ(t)〉

〈Θ[x(s)− c]Θ[x(t)− c]〉 decreases exponentially with the distance t − s, i.e.

〈Θ[x(s)− c]〉+ (〈Θ[x(s)− c]〉 〈Θ[x(t)− c]〉 − 〈Θ[x(s)− c]〉) · (1− e−λ1(t−s))
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Optimisation

ODEs for moments and master equation are included in the
KL[q||ppost ] by using Lagrange multipliers λi

Approximating process q found by gradient descent, solving
forward and backward an iterative system

Algorithm

while ∆KL[q||ppost ] > threshold

solve forward: master equation, ODEs for moments

solve backward:

(
δL
δq
, δL
δ〈x〉 ,

δL
δ〈x2〉 ,

δL
δ〈y〉 ,

δL
δ〈y2〉

)
= 0 −→ λi (t)

calculate gradients w.r.t. transition rates:
(
δL
δg+

, δL
δg−

)
calculate gradients w.r.t. parameters:

(
δL
δA
, δL
δb
, · · ·

)
update transition rates g0,1 and parameters

end
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Results on simulated data set: state inference

Observations are given by adding Gaussian noise with SD of 0.03
to 10 discrete time points drawn from the model with a given TF
activity (input µ) and known parameters. The inferred posterior
TF activity is then compared with the true input

Figure: Inferred posterior mean activity (solid) versus true input impulse (dashed)

Ocone & Sanguinetti Inference in hierarchical transcriptional network motifs



Basic problem
Model

Inference
Results

Results on simulated data set: parameters estimation

Figure: Inferred posterior parameters (green) versus true parameters (blue)

Ocone & Sanguinetti Inference in hierarchical transcriptional network motifs



Basic problem
Model

Inference
Results

Results on simulated data set: moments reconstrunction

From inferred transcription factors activities and estimated model
parameters we reconstruct first moment for x and y and compare
with real observations x̂ and ŷ , respectively

Figure: Inferred posterior first moments (solid) versus observations (crosses)
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Results on p53 data set: SIM model

Activity of p53 has been experimentally measured by Barenco et al. (Genome
Biology, 2006) using western blots (semi-quantitative)

Barenco (and later Lawrence et al., NIPS 2007) predicts p53 activity using a
single-input motif (SIM) structure

We compute inference on p53 activity using a SIM model and compare our
results with Barenco’s prediction

p53 activity experimental measure (crosses)

Barenco SIM prediction (dashed) compared with our SIM prediction (solid)
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Results on p53 data set: FFL model

p53 is involved in a FFL where it acts as a slave TF (Nature Reviews, 2009)

E2F1 represents the master TF which activates p53 and p53 target genes

We compute inference on p53 activity using a FFL model and compare our
results with Barenco’s prediction

p53 activity experimental measure (crosses)

Barenco SIM prediction (dashed) compared with our FFL prediction (solid)
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Conclusion and future directions

FFL models can explain biological data and give better
predictions on TFAs, compared to SIM models

multi-input FFL, multi-slave FFL, feedback loops

stochastic versions (see Opper, Ruttor and Sanguinetti
NIPS10)
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