On Learning Gene Regulatory Networks with Only Positive Examples

<u>Luigi Cerulo</u>, University of Sannio, Italy Michele Ceccarelli, University of Sannio, Italy

Outline

- Supervised inference of gene regulatory networks
- The positive only problem
- Negative selection approaches
- Effect on prediction accuracy
- Conclusions and future directions

Gene Regulatory Network (GRN)

The network of transcription dependences among genes of an organism, known as transcription factors, and their binding sites.

Gene Regulatory Network (GRN)

- A gene regulatory network can be represented as a graph G = (Vertices, Edges)
- Vertices = Genes
- Edges = Interactions

Inference of Gene regulatory networks

GRN unsupervised inference

- Correlation models (eg. Mutual information)
- Bayesian Network
- Boolean networks
- ODE

GRN supervised Inference

 Part of the network is known in advance from public databases (Eg. RegulonDB)

GRN supervised Inference

 $G_i = \{e_1, e_2, e_3, \dots, e_n\}$ $T = \{(G_1, G_2), (G_2, G_3), (G_6, G_7), (G_7, G_8)\}$

Binary classifier (SVM, Decision Tree, Neural Networks,...)

Related work

BIOINFORMATICS

Vol. 24 ECCB 2008, pages i76-i82 doi:10.1093/bioinformatics/btn273

SIRENE: supervised inference of regulatory networks

Fantine Mordelet^{1,2,3,4,*} and Jean-Philippe Vert^{1,2,3}

¹Ecole des Mines de Paris, ParisTech, 35 rue Saint-Honoré, Fontainebleau F-77300, ²Institut Curie, Paris F-75248, ³INSERM, U900, Paris F-75248 and ⁴CREST, INSEE, 3 av. Pierre Larousse, Malakoff, F-92240 France

*Ecole des Mines de Paris, Paristech, 35 rue Saint-Honore, Fontainebleau F-77300, *Institut Cune, Paris F-75248 ³INSERM, U900, Paris F-75248 and ⁴CREST, INSEE, 3 av. Pierre Larousse, Malakoff, F-92240 France

- SIRENE approach
 - trains an SVM classifier for each gene and predicts which genes are regulated by that gene
 - combines all predicted regulations to obtain the full regulatory network

Method	Recall at 60% of Precision	Recall at 80% of Precision	
SIRENE	44.5%	17.6%	
CLR	7.5%	5.5%	
Relevance networks	4.7%	3.3%	
ARACNe	1%	0%	
Bayesian network	1%	0%	

Compared with unsupervised methods (Mordelet and Vert, 2008)

Supervised learning of gene regulatory networks

Training set

Friday, October 15, 2010

Effect of PU-learning

E.coli dataset [J.J. Faith et al., 2007]

Reliable negative selection

Reliable negative selection

Reliable negative selection

Reliable negative selection in text mining

- B. Liu et al. Building Text Classifiers Using Positive and Unlabeled Examples, in ICDM 2003
- Yu et al. PEBL: Positive Example Based Learning for Web Page Classification Using SVM, in KDD 2002
- Denis et al. Text classification from positive and unlabeled Examples, in IPMU 2002

Methods based on reliable negative selection

Quality of RN

- RN could be contaminated with positives embedded in unlabeled data
- The <u>fraction of positive contamination</u> is the ratio between the number of positives in RN and the total number of unknown positives |Q|

Effect of positive contamination

E.coli dataset [J.J. Faith et al., 2007]

Friday, October 15, 2010

AUROC

Effect of positive contamination

E.coli dataset [J.J. Faith et al., 2007]

Friday, October 15, 2010

F-Measure

Network topology based heuristics

Network motifs

Network motifs are small connected subnetworks a network exhibits in a significant higher or lower occurrences than would be expected just by chance

		E. coli		S. cerevisiae	
No.	Motif	Z-score	Freq.	Z-score	Freq.
1		20.343	97.467%	16 918	93.82%
				10.710	,
2		13.295	0.318%	10.827	0.298%
3		14.401	0.105%	27.202	0.032%
4		2.058	<0.001%	4.233	<0.001%
5		4.533	0.004%	4.068	<0.001%

B. Goemann, E. Wingender, and A. P. Potapov, "An approach to evaluate the topological significance of motifs and other patterns in regulatory networks." *BMC System Biology*, vol. 3, no. 53, May 2009.

S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, "Network motifs in the transcriptional regulation network of escherichia coli," *Nature Genetics*, vol. 31, no. 1, pp. 64–68, May 2002.

- For each three genes sub networks T:
- If matches a network motifs M then considers all connections not present in M as negatives

- For each three genes sub networks T:
- If matches a network motifs M then considers all connections not present in M as negatives

- For each three genes sub networks T:
- If matches a network motifs M then considers all connections not present in M as negatives

- For each three genes sub networks T:
- If matches a network motifs M then considers all connections not present in M as negatives

MOTIF selection performance

E.coli dataset [J.J. Faith et al., 2007 and RegulonDB]

Friday, October 15, 2010

AUROC

MOTIF selection performance

E.coli dataset [].J. Faith et al., 2007 and RegulonDB]

Friday, October 15, 2010

AUROC

Effect of positive contamination

E.coli dataset [J.J. Faith et al., 2007]

Friday, October 15, 2010

F-Measure

Effect of positive contamination

E.coli dataset [J.J. Faith et al., 2007]

Friday, October 15, 2010

F-Measure

Scale free networks

Albert-László Barabási and Zoltán N. Oltvai **Network biology: Understanding the cell's functional organization** Nature Reviews Genetics 5, 101-113 (2004)

Hierarchical networks

Hong-Wu Ma, Jan Buer, and An-Ping Zeng

Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach BMC Bioinformatics 2004 5:199

Experimental data

- 445 Affymetrix Antisense2 microarray expression profiles for 4345 genes of E.coli
 [J.J. Faith et al., 2007]
- Data were standardized (i.e. zero mean unit standard deviation)
- Regulations extracted from RegulonDB (v.
 5) between 154 Transcription Factors and 1211 genes

Summary and conclusions

- Learning gene regulations is affected by the problem of learning from positive only data
- At least for E.coli
 - The study of positive contamination shows that there is room for new heuristics
 - Topology based heuristics (eg. motifs) have shown promising results.
- Open issues arise on higher level organisms where gene interactions are more complex