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Qutline

® Supervised inference of gene regulatory
networks

® The positive only problem
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Gene Regulatory
Network (GRN)

The network of transcription dependences among genes of an organism,
known as transcription factors, and their binding sites.
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Gene Regulatory
Network (GRN)

® A gene regulatory
network can be
represented as a graph
G = (Vertices, Edges)
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Inference of Gene
regulatory networks
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GRN
unsupervised inference

® Correlation models (eg. Mutual
information)

Bayesian Network
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GRN
supervised Inference

® Part of the network
is known in advance
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GRN
supervised Inference
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Related work
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SIRENE: supervised inference of regulatory networks
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® S|RENE approach

® trains an SVM classifier for each gene and predicts
which genes are regulated by that gene

® combines all predicted regulations to obtain the full
regulatory network
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CLR
SIRENE |
SIRENE-Bias |
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0.4 0.6 0.8
Ratio of false positives

Method Recall at 60% of Precision Recall at 80% of Precision
SIRENE 44.5% 17.6%

CLR 7.5% 5.5%

Relevance networks 4.7% 3.3%

ARACNe 1% 0%

Bayesian network 1% 0%

Compared with unsupervised methods (Mordelet and Vert, 2008)
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Supervised learning

Friday, October 15, 2010



Supervised learning

Friday, October 15, 2010



Supervised learning
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Supervised learning
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Supervised learning
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Supervised learning with
unlabeled data
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Supervised learning with
unlabeled data
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Supervised learning with
unlabeled data
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Supervised learning with
unlabeled data
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Supervised learning of
gene regulatory networks

‘s this a negative
' example?
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Training set

Labeled Unlabeled
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AUROC

% of known positives

Effect of PU-learning

E.coli dataset [J.). Faith et al., 2007]




Reliable negative
selection
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Reliable negative
selection
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Reliable negative
selection
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Reliable negative
selection in text mining

® B.Liu et al. Building Text Classifiers Using
Positive and Unlabeled Examples, in ICDM

2003

® Yu et al. PEBL: Positive Example Based
Learning for VWeb Page Classification Using
SVM, in KDD 2002

® Denis et al. Text classification from positive
and unlabeled Examples, in IPMU 2002




Methods based on
reliable negative selection

Unlabeled

Original
training set

Negative selection
heuristic
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Quality of RN

® RN could be contaminated with positives
in unlabeled

—
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positive contamination = 0

AUROC

positive contamination = 1

/ (PU-learning)

% of known positives

Effect of positive contamination

E.coli dataset [].]. Faith et al., 2007]
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positive contamination= 0

F-Measure

positive contamination = 1
(PU-learning)

% of known positives

Effect of positive contamination

E.coli dataset [].]. Faith et al., 2007]
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Network topology
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Network motifs

Network motifs are small connected
subnetworks a network exhibits in a
significant higher or lower occurrences than
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E. coli S. cerevisiae

: Motif Z-score Freq. Z-score Freq.
e || 20343  97.467% | 16.918 93.82%
- 13.295 0.318% 10.827 0.298%

14401  0.105% | 27.202  0.032%
2058  <0.001% | 4233  <0.001%
4533  0.004% | 4.068  <0.001%

B. Goemann, E. Wingender, and A. P. Potapov, “An approach to evaluate the
topological significance of motifs and other patterns in regulatory networks.”
BMC System Biology, vol. 3, no. 53, May 2009.

S. S. Shen-0Orr, R. Milo, S. Mangan, and U. Alon, “Network motifs in the
transcriptional regulation network of escherichia coli,” Nature Genetics, vol. 31,

no. 1, pp. 64—68, May 2002.
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Network Motifs
Heuristic

® For each three genes sub networks T:

o If matches a network motifs M then
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Network Motifs
Heuristic

® For each three genes sub networks T:

® |f matches a network motifs M then
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Network Motifs
Heuristic

® For each three genes sub networks T:

® |f matches a network motifs M then
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Network Motifs
Heuristic

® For each three genes sub networks T:

® |f matches a network motifs M then
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positive contamination = 0

AUROC

positive contamination = 1

/ (PU-learning)

% of known positives

MOTIF selection performance

E.coli dataset [].J. Faith et al.,, 2007 and RegulonDB]
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positive contamination = 0

AUROC

positive contamination = 1

MOV (PU-learning)

% of known positives

MOTIF selection performance

E.coli dataset [].J. Faith et al.,, 2007 and RegulonDB]
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positive contamination= 0

F-Measure

positive contamination = 1
(PU-learning)

% of known positives

Effect of positive contamination

E.coli dataset [].]. Faith et al., 2007]
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positive contamination= 0

F-Measure

positive contamination = 1
(PU-learning)

% of known positives

Effect of positive contamination

E.coli dataset [].]. Faith et al., 2007]
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Scale free networks

A Random network B Scale-free network C Hierarchical network

Albert-Laszl6 Barabasi and Zoltan N. Oltvai
Network biology: Understanding the cell’s functional organization
Nature Reviews Genetics 5, 101-113 (2004)
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Hierarchical networks
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Hong-Wu Ma, Jan Buer, and An-Ping Zeng

Hierarchical structure and modules in the Escherichia coli transcriptional
regulatory network revealed by a new top-down approach

BMC Bioinformatics 2004 5:199
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Experimental data

® 445 Affymetrix Antisense2 microarray

expression profiles for 4345 genes of E.coli
[ Faith et al., 2007]

® Data were standardized (i.e. zero mean unit
standard deviation)

® Regulations extracted from RegulonDB (v.

5) between |54 Transcription Factors and
121 | genes




Summary and
conclusions

® |[earning gene regulations is affected by the problem
of learning from positive only data

® At least for E.coli

® The study of positive contamination shows that
there is room for new heuristics
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