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Similarity based Function Prediction Methods

Similarity based Function Prediction Methods

Assumption:
Interacting proteins have similar functions

Optimization criteria:
Minimizing the number of interacting pairs
of proteins with no common function

Majority Rule
Functional Clustering
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Similarity based Function Prediction Methods

Majority Rule

Predicted function: Most common function(s) among classified
partners
Problem: Links unclassified-unclassified proteins completely
neglected
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Similarity based Function Prediction Methods

Functional Clustering

Cluster the PPI network
Predict the function of unclassified protein
based on the cluster they belong to
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Collaboration based Function Prediction Method

Collaboration based Function Prediction Method

Main Idea: A biological process is the aggregation
of each individual protein’s functions
Assumption: Topologically close proteins tend to
have collaborative functions
Collaborative functions: Pairs of functions that
frequently interface with each other in different
interacting proteins
A Reinforcement Based Function Predictor (RL)
SOM Based Function Predictor
protein p:{

Function Set : FSp; FSp(fi)
Neighborhood Function Vector : NBp; NBp(fj)
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Collaboration based Function Prediction Method

A Reinforcement Based Function Predictor
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Collaboration based Function Prediction Method

A Reinforcement Based Function Predictor

Prediction Time:
Select candidate functions
Rank candidate functions based on how well they collaborate with
the neighborhood of unclassified protein p
Formula (1) assigns a collaboration score to each candidate
function fc :

Score(fc)=
∑
∀fj∈F

NBp(fj) ∗ FuncColVal(fj , fc) (1)
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Collaboration based Function Prediction Method

SOM Based Function Predictor

Self Organizing Map (SOM)
|inputNeurons| =
|outputNeurons| = |F |
inputNeuron(i) = NBp(fi)
outputNeuron(i) = FSp(fi)
Tune Parameters
Predict Functions
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Evaluation

Datasets

Datasets

Three Yeast Datasets: Krogan, VonMering and DIP-Core

Number of Proteins Number of Interactions
Von Mering 2401 22000

Krogan 2708 14246
DIP-Core 2388 4400

Table: Statistical information of datasets.
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Evaluation

Parameter Tuning

Parameter Tuning

SOM method
Candidate Function Strategy
Decreasing Learning Rate
Termination Criteria

Majority Rule
Wider Neighborhood Level
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Evaluation

Parameter Tuning

“Candidate Function Strategy” in SOM method

Second function level produces the best result
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Evaluation

Parameter Tuning

“Decreasing Learning Rate” in SOM method

Fmeasure values maximize when DecLR equals to 0.9
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Evaluation

Parameter Tuning

“Termination Criteria” in SOM method

TC = 10 produces the best result
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Evaluation

Parameter Tuning

“Wider Neighborhood Level” in Majority Rule method

NB-Li represents the 1-, 2- or 3-neighborhood of the protein
Mostly, no improvement by considering wider neighborhood
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Evaluation

Similarity Vs Collaboration

Similarity V.S Collaboration

Compare Collaboration based
methods (SOM and RL) with
Similarity based methods (MR
and FC)
Five different function levels

11.02.01 (rRNA synthesis) Vs
11.02.03 (mRNA synthesis)
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Similarity V.s Collaboration
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Evaluation

Similarity Vs Collaboration

Similarity V.s Collaboration

In all three datasets, collaboration methods predicts functions
more accurately than similarity based methods
More detailed functions level→ More difference in performance
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Conclusions

Conclusions

Function prediction in PPI networks
Similarity based Approaches
Collaboration based Approaches

Reward-Punish (RL)
Self Organizing Map (SOM)

Similarity V.s Collaboration
3% to 17% improvement in F-measure
values
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Thanks!
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Reinforcement based Function Predictor

Reinforcement based Function Predictor

∀fi ∈ FSp :

FuncColVal(fi , fj)+=
NBp(fj )∗R
support(fj )

∀fi ∈ FSp :
FuncColVal(fi , fj)−= P

support(fj )

Candidate Function Strategies:
First Function Level Strategy
Second/Third/Fourth Function
Level Strategy
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SOM based Function Predictor
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