Collaboration-based Function Prediction in Protein-Protein Interaction networks

Hossein Rahmani

Joint work with: Hendrik Blockeel, Andreas Bender

October 2010

Hossein Rahmani (Leiden University)

October 2010 1 / 28

• • • • • • • • • • •

Protein-Protein Interaction (PPI) Networks

Function Prediction in PPI Networks

Hossein Rahmani (Leiden University)

October 20	10 3	3/28
------------	------	------

Outline

Similarity based Function Prediction

- Proposed Methods:
 - Collaboration based Function Prediction
- Evaluation

< ロ > < 回 > < 回 > < 回 > < 回</p>

Similarity based Function Prediction Methods

- Assumption:
 - Interacting proteins have similar functions
- Optimization criteria:
 - Minimizing the number of interacting pairs of proteins with no common function
- Majority Rule
- Functional Clustering

Majority Rule

- Predicted function: Most common function(s) among classified partners
- Problem: Links unclassified-unclassified proteins completely neglected

Functional Clustering

- Cluster the PPI network
- Predict the function of unclassified protein based on the cluster they belong to

• • • • • • • • • • • • •

Outline

- Similarity based Function Prediction
- Proposed Methods:
 - Collaboration based Function Prediction
- Evaluation

Collaboration based Function Prediction Method

- Main Idea: A biological process is the aggregation of each individual protein's functions
- Assumption: Topologically close proteins tend to have collaborative functions
- Collaborative functions: Pairs of functions that frequently interface with each other in different interacting proteins
- A Reinforcement Based Function Predictor (RL)
- SOM Based Function Predictor
- protein p:

Function Set : FS_p ; $FS_p(f_i)$ Neighborhood Function Vector : NB_p ; $NB_p(f_j)$

A Reinforcement Based Function Predictor

э

A Reinforcement Based Function Predictor

Prediction Time:

- Select candidate functions
- Rank candidate functions based on how well they collaborate with the neighborhood of unclassified protein p
- Formula (1) assigns a collaboration score to each candidate function f_c:

$$Score(f_c) = \sum_{\forall f_j \in F} NB_p(f_j) * FuncColVal(f_j, f_c)$$
(1)

< 回 > < 三 > < 三 >

SOM Based Function Predictor

- Self Organizing Map (SOM)
- |inputNeurons| =
 |outputNeurons| = |F|
- inputNeuron(i) = $NB_p(f_i)$
- $outputNeuron(i) = FS_{\rho}(f_i)$
- Tune Parameters
- Predict Functions

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

- Similarity based Function Prediction
- Proposed Methods:
 - Collaboration based Function Prediction
- Evaluation
 - Data sets
 - Parameter Tuning
 - Similarity V.S Collaboration

Datasets

Three Yeast Datasets: Krogan, VonMering and DIP-Core

	Number of Proteins	Number of Interactions
Von Mering	2401	22000
Krogan	2708	14246
DIP-Core	2388	4400

Table: Statistical information of datasets.

э

Parameter Tuning

Parameter Tuning

SOM method

- Candidate Function Strategy
- Decreasing Learning Rate
- Termination Criteria
- Majority Rule
 - Wider Neighborhood Level

Parameter Tuning

"Candidate Function Strategy" in SOM method

Second function level produces the best result

Parameter Tuning

"Decreasing Learning Rate" in SOM method

Fmeasure values maximize when DecLR equals to 0.9

A (10) A (10)

Parameter Tuning

"Termination Criteria" in SOM method

TC = 10 produces the best result

Parameter Tuning

"Wider Neighborhood Level" in Majority Rule method

- NB-Li represents the 1-, 2- or 3-neighborhood of the protein
- Mostly, no improvement by considering wider neighborhood

-

- Similarity Vs Collaboration

Similarity V.S Collaboration

- Compare Collaboration based methods (SOM and RL) with Similarity based methods (MR and FC)
- Five different function levels
 - 11.02.01 (rRNA synthesis) Vs 11.02.03 (mRNA synthesis)

01 METABOLISM 01.01 amino acid metabolism 01.01.03 assimilation of ammonia, metabolism 01.01.03.01 metabolism of glutamine 01.01.03.01.01 biosynthesis of glutamine 01.01.03.02 degradation of glutamine 01.01.03.02 metabolism of glutamate 01.01.03.02.01 biosynthesis of glutamate

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Similarity Vs Collaboration

Similarity V.S Collaboration

Similarity Vs Collaboration

Similarity V.S Collaboration

VonMering DataSet

Hossein Rahmani (Leiden University)

3

Similarity Vs Collaboration

Similarity V.s Collaboration

-Similarity Vs Collaboration

Similarity V.s Collaboration

- In all three datasets, collaboration methods predicts functions more accurately than similarity based methods
- \blacksquare More detailed functions level \rightarrow More difference in performance

Conclusions

- Function prediction in PPI networks
- Similarity based Approaches
- Collaboration based Approaches
 - Reward-Punish (RL)
 - Self Organizing Map (SOM)
- Similarity V.s Collaboration
 - 3% to 17% improvement in F-measure values

Thanks!

Hossein Rahmani (Leiden University)

Reinforcement based Function Predictor

- $\forall f_i \in FS_p$: FuncColVal $(f_i, f_j) + = \frac{NB_p(f_j)*R}{support(f_j)}$
- $\forall f_i \in FS_p$: FuncColVal $(f_i, f_j) = \frac{P}{support(f_i)}$
- Candidate Function Strategies:
 - First Function Level Strategy
 - Second/Third/Fourth Function Level Strategy

observation

SOM based Function Predictor

Algorithm 4.1: SOM TRAINING PHASE(LR, DecLR, TC) procedure SOM-TRAINING(LR, DecLR, TC) $maxChangeInNetworkWeights \leftarrow 0;$ repeat for each classified protein $p \in P$ $(winnerNeuronSet = {})$ build NBp for each $f_i \in F$ **do** $inputNeuron(i) = NB_p(f_i)$ do < for each $f_i \in FS_p$ do winnerNeuronSet = $\bigcup_{\forall f_i \in FS_n} \{f_i\}$ apply Formula (2). update maxChangeInNetworkWeights $LR \leftarrow LR * DecLR$ until (maxChangeInNetworkWeights < TC)

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A