A fast algorithm for structured gene selection

MLSB 2010

Sofia Mosci DISI, Università degli Studi di Genova

Joint work with A. Verri(1), S. Villa(1), and L. Rosasco(2) 1 - Universita' di Genova 2-IIT-MIT

Gene selection problem

extracting a predictive model depending on a small subset of genes

many variable selection algorithms are available (filters wrappers and embedded)

- Iow accuracy
- low stability
- Iow interpretability

・日・・ モー・ ・ ヨー

Gene selection problem

extracting a predictive model depending on a small subset of genes

many variable selection algorithms are available (filters wrappers and embedded)

- low accuracy
- low stability
- low interpretability

Strong prior is often available!

Genes must be selected according to groups defined a priori.

Examples of groups:

- GO
- KEGG
- ad hoc grouping

Group lasso

References:

Lanckriet et al.'04, Meier et al. '06, Yuan-Lin '06, Bach '08,...

Group lasso drawback: groups must be a partition of the genes

イロト イポト イヨト イヨト

Group lasso with overlap (Jacob, Obozinski and Vert '09)

genes must be selected group-wise according to groups defined a priori.

Like group lasso but groups may overlap.

Advantages:

- higher stability
- higher accuracy
- higher interpretability

Disadvantages:

implementability

向下 イヨト イヨト

Goal

to develop a scalable approach to group lasso with overlap

Plan:

- Proximal methods for Sparsity based regularization
- Group lasso with overlap: the initial approach
- Group lasso with overlap: our projection algorithm
- Experiments

・ 同 ト ・ ヨ ト ・ ヨ ト

General sparsity prior: variables are organized in separate, nested or possibly overlapping groups.

Given a training set $(x_i, y_i)_{i=1}^n$, with $x_i \in \mathbb{R}^d$, consider

$$\underset{\beta \in \mathbb{R}^{d}}{\operatorname{argmin}} \left\{ \underbrace{\frac{1}{n} \|X\beta - y\|^{2}}_{data \ term} + \underbrace{2\tau\Omega(\beta)}_{penalty \ term} \right\}$$

where

- $[X]_{i,j} = (x_i)_j$
- Ω: ℝ^d→ ℝ ∪ {+∞}, encodes the sparsity prior, and is convex and one-homogeneous (Ω(λβ)=λΩ(β), ∀β∈ℝ^d and λ∈ℝ⁺).

・ 同 ト ・ ヨ ト ・ ヨ ト

A Proximal Algorithm

Require: $\tau, \sigma > 0$ Initialize: $\beta^0 = 0$ while convergence not reached do p := p + 1 $\left(\beta^{p-1}-\frac{1}{n\sigma}X^{T}(X\beta^{p-1}-y)\right)$ $prox_{rac{ au}{\sigma}\Omega}$ $\beta^{p} =$ end while return β^p

References:

- Lions-Mercier('79), Passty ('76), Tseng (90s),
 Chen-Rockafellar('89), Eckstein ('89), Combettes-Wajs('05)
- Duchi and Singer '09, Jenatton et al. '10, Mosci et al. '10 for machine learning

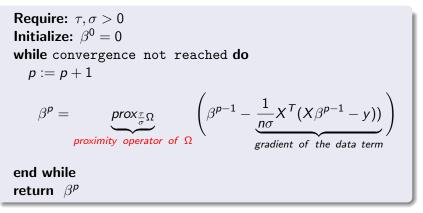
A Proximal Algorithm

Require: $\tau, \sigma > 0$ Initialize: $\beta^0 = 0$ while convergence not reached do p := p + 1 $\left(\beta^{p-1} - \frac{1}{n\sigma}X^{T}(X\beta^{p-1} - y)\right)$ $prox_{rac{ au}{\sigma}\Omega}$ $\beta^{p} =$ gradient of the data term end while return β^p

References:

- Lions-Mercier('79), Passty ('76), Tseng (90s), Chen-Rockafellar('89), Eckstein ('89), Combettes-Wajs('05)
- Duchi and Singer '09, Jenatton et al. '10, Mosci et al. '10 for machine learning

A Proximal Algorithm



References:

- Lions-Mercier('79), Passty ('76), Tseng (90s), Chen-Rockafellar('89), Eckstein ('89), Combettes-Wajs('05)
- Duchi and Singer '09, Jenatton et al. '10, Mosci et al. '10 for machine learning

Iterative soft-thresholding for the lasso

Prior: the relevant variables are a subset of the total variables

$$\underset{\beta \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \| X\beta - y \|^2 + 2\tau \|\beta\|_1$$

Require:
$$\tau, \sigma > 0$$

Initialize: $\beta^0 = 0$
while convergence not reached do
 $p := p + 1$
 $\beta^p = \mathbf{S}_{\frac{\tau}{\sigma}} \left(\beta^{p-1} - \frac{1}{n\sigma} X^T (X \beta^{p-1} - y) \right)$

return β^p

where **S** is the soft-thresholding operator: $S_{\lambda}(\beta^{j}) := (|\beta^{j}| - \lambda)_{+} sign(\beta^{j})$

References: Daubechies et al. '04, Combettes '05, Figuereido et al. :07, = , =

Iterative soft-thresholding for group lasso

Prior: the relevant variables are union of a subset of the *B* groups given a priori, $\{G_r\}_{r=1}^{B}$, that make a block partition of $\{1, ..., d\}$

$$\operatorname{argmin}_{\beta \in \mathbb{R}^d} \frac{1}{n} \| X\beta - y \|^2 + \underbrace{2\tau \sum_{r=1}^M \sqrt{\sum_{j \in G_r} \beta_j^2}}_{\Omega}$$

$$\beta^{p} = \tilde{\mathsf{S}}_{\frac{\tau}{\sigma}} \left(\beta^{p-1} - \frac{1}{n\sigma} X^{T} (X \beta^{p-1} - y) \right)$$

where $\tilde{\boldsymbol{S}}$ is the group-wise soft-thresholding operator:

$$ilde{\mathsf{S}}_{\lambda}(eta_k) = (\|eta_k\|_k - \lambda)_+ rac{eta_k}{\|eta_k\|_k}$$

Prior: the relevant variables are the union of a small subset of the *B* groups given a priori, $\mathcal{G} = \{G_r\}_{r=1}^B$ with $G_r \subset \{1, \ldots, d\}$ Like Group Lasso but groups may overlap

$$\underset{\beta \in \mathbb{R}^{d}}{\operatorname{argmin}} \left\{ \frac{1}{n} \| X\beta - y \|^{2} + 2\tau \Omega_{\operatorname{overlap}}^{\mathcal{G}}(\beta) \right\},$$

$$\Omega^{\mathcal{G}}_{\mathsf{overlap}}(\beta) = \inf_{\substack{(v_1, \dots, v_M), v_r \in \mathbb{R}^d, \\ \mathsf{supp}(v_r) \subset G_r, \sum_{r=1}^M v_r = \beta}} \sum_{r=1}^M \|v_r\|.$$

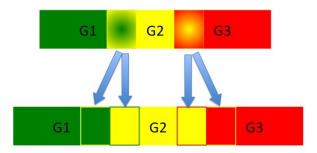
Reference:

Jacob, Obozinski and Vert, *Group Lasso with Overlap and Graph Lasso*, ICML 2009

・ 同 ト ・ ヨ ト ・ ヨ ト …

Group Lasso with overlap: the replication approach

A simple implementation is obtained by replicating variables belonging to more than one group, and using any algorithm for standard group lasso (e.g iterative group-wise soft-thresholding).

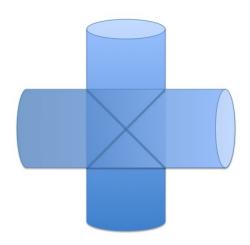


Drawback: as the degree of overlap increases the dimensionality increases and the computational burden may become very high!

$$prox_{\tau\Omega^{\mathcal{G}}_{overlap}} = I - \pi_{\tau K}$$

K is the intersection of cylinders centered in a coordinate subspace.

向下 イヨト イヨト



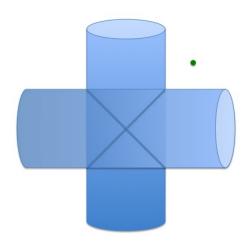
$$prox_{\tau\Omega^{\mathcal{G}}_{overlap}} = I - \pi_{\tau K}$$

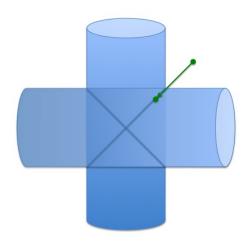
K is the intersection of cylinders centered in a coordinate subspace.

Only a (small) subset of the cylinders are active. For a given $\beta \in \mathbb{R}^d$, the projection onto τK is given by

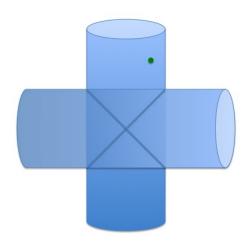
$$\begin{array}{ll} \text{argmin} & \| v - \beta \|^2 \\ \text{s.t.} & v \in \mathbb{R}^d, \| v \|_G \leq \tau \text{ per } G \in \hat{\mathcal{G}}. \end{array}$$

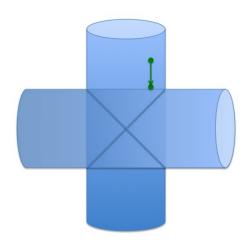
where $\hat{\mathcal{G}} := \{ \mathcal{G} \in \mathcal{G}, \ \|\beta\|_{\mathcal{G}} > \tau \}$ is the set of active groups .

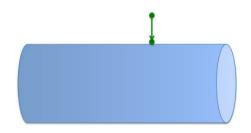




Sofia Mosci







$$prox_{\tau\Omega^{\mathcal{G}}_{overlap}} = I - \pi_{\tau K}$$

K is the intersection of cylinders centered in a coordinate subspace.

Only a (small) subset of the cylinders are active. For a given $\beta \in \mathbb{R}^d$, the projection onto τK is given by

$$\begin{array}{ll} \text{argmin} & \| v - \beta \|^2 \\ \text{s.t.} & v \in \mathbb{R}^d, \| v \|_{\mathcal{G}} \leq \tau \text{ per } \mathcal{G} \in \hat{\mathcal{G}}. \end{array}$$

where $\hat{\mathcal{G}} := \{ \mathcal{G} \in \mathcal{G}, \ \|\beta\|_{\mathcal{G}} > \tau \}$ is the set of active groups .

The projection can be computed by solving the dual problem in \mathbb{R}^{B} $\lambda^{*} = \operatorname{argmax}_{\lambda \in \mathbb{R}^{\hat{B}}_{+}} \sum_{j=1}^{d} \frac{-w_{j}^{2}}{1 + \sum_{r=1}^{\hat{B}} 1(j \in \hat{G}_{r})\lambda_{r}} - \sum_{r=1}^{\hat{B}} \lambda_{r}\tau^{2},$

Gradient step

$$w = \beta^{p-1} - \frac{1}{\sigma} X^T (X \beta^{p-1} - y)$$

Projection

- find the set of active groups $\hat{\mathcal{G}} := \{ \hat{\mathcal{G}}_1, \dots, \hat{\mathcal{G}}_{\hat{\mathcal{B}}} \}$
- \bullet compute λ^* solution of the dual problem associated to the reduced projection:

$$\lambda^* = \operatorname{argmax}_{\lambda \in \mathbb{R}^{\hat{B}}_+} \sum_{j=1}^{d} \frac{-w_j^2}{1 + \sum_{r=1}^{\hat{B}} 1(j \in \hat{G}_r)\lambda_r} - \sum_{r=1}^{\hat{B}} \lambda_r \tau^2$$

•
$$\beta_j^p = w_j - rac{w_j}{(1+\sum_{r=1}^{\hat{B}} \mathbf{1}(j\in\hat{G}_r)\lambda_r^*)}$$
 for $j=1,\ldots,d$

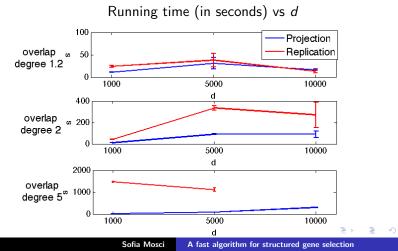
Overall convergence is still guaranteed!

For more details see the forthcoming paper: Mosci, Verri, Villa and Rosasco, A primal-dual algorithm for group ℓ_1 regularization with overlapping groups , NIPS 2010.

Experiments: projection vs duplication

3 relevant groups (with 20% overlap) for a total of 240 variables

for k>3, G_k is built by drawing 100 indices from $[1,\ldots,d]$ n=2400



Microarray experiment presented in Jacob, Obozinski and Vert '09 on breast cancer (Van de Vijver et al. '01)

- 8141 genes
- 295 tumors
- 637 gene groups (Subramanian et al. 2005).
- 3-fold cross validation

	Replication	Projection
loss:	logistic	square
prediction error:	$\textbf{0.36} \pm \textbf{0.03}$	$\textbf{0.30} \pm \textbf{0.06}$
# of selected pathways:	6, 5 and 78	2, 3 and 4
computing time:	-	850s
Frequency of selected groups	Split 1	
for the Projection algorithm	Split 2	
	Split 3) → < 呈 >
Sofia M	Mosci A fast algorith	m for structured gene selection

Concluding Remarks

I have presented an iterative procedure for solving the group lasso with overlap regularization problem that

- is based on proximal methods and an ad hoc lemma
- is convergent
- is fast and can deal with large data sets

(code available at:

www.disi.unige.it/person/MosciS/CODE/Prox.html)

I have not discussed:

- accelerations of the basic schemes
 - Continuation Methods (Hale, Yin and Zhang '08)
 - Adaptive Step size
 - Nesterov Method, linear → quadratic convergence! (Nesterov '83, Guler '91, Beck and Teboulle '09)
- other loss functions

(本間) (本語) (本語)

Concluding Remarks

I have presented an iterative procedure for solving the group lasso with overlap regularization problem that

- is based on proximal methods and an ad hoc lemma
- is convergent
- is fast and can deal with large data sets

(code available at:

www.disi.unige.it/person/MosciS/CODE/Prox.html)

I have not discussed:

- accelerations of the basic schemes
 - Continuation Methods (Hale, Yin and Zhang '08)
 - Adaptive Step size
 - Nesterov Method, linear → quadratic convergence! (Nesterov '83, Guler '91, Beck and Teboulle '09)
- other loss functions

向下 イヨト イヨト

Sofia Mosci A fast algorithm for structured gene selection

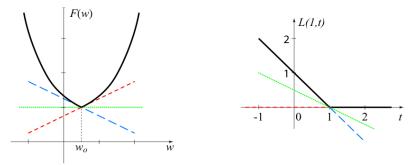
・ロト・(四ト・(川下・(日下・(日下)

Experimental protocol

- For each (τ, λ) :
 - Variable selection via Sparse Learning Algorithm with parameter τ on training set
 - **Regression** via Regularized Least Squares(RLS) on training set with parameter λ on selected variables
 - Error estimation on **validation** set (hold-out or cross-validation)
- Minimization of the validation error $\rightarrow (\tau_{opt}, \lambda_{opt})$
- Error estimation on **test** set

(1) マン・ション・

Proximal Operator



For one-homogeneous functionals we have the following result

Let K denote the subdifferential of Ω , $\partial\Omega(0)$, at the origin (which is a convex and closed subset of \mathbb{R}^d . For any $\lambda \in \mathbb{R}^+$ we let $\pi_{\lambda K}: \mathbb{R}^d \to \mathbb{R}^d$ be the projection on $\lambda K \subset \mathbb{R}^d$. Then

$$prox_{\lambda\Omega} = (I - \pi_{\lambda K})$$