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Drug bioactivity classification

e Given molecule, predict active/not active

e State of the art method: SVM with graph kernels over the molecules
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Predicting activity against multiple targets

e There are numerous targets (different viruses, cancer types, ...) that
share characteristics

e Can we predict the activity better by learning against all available
targets at the same time?
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Multilabel classification

e Single label classification :

i
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e Multilabel classification: Multiple labels (targets) associate with each
example.
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e Basic approach: Build a single-label classifier for each individual label,
compose the multilabels from their output

e Does not benefit from possible statistical dependencies between labels

e Structured output prediction: utilize structure (graph, tree, sequence)
of the output to predict the multilabel in a single shot

e Leverage on the correlation of neighboring labels
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Method: Max-Margin Conditional Random Field (MMCRF)

e Method originally proposed in Rousu, Saunders, Szedmak,
Shawe-Taylor. Efficient algorithms for max-margin structured
classification. In Predicting Structured Data, MIT Press, 2007, pp.
105-129

e Relative of M®N (Taskar et al. 2003) - but assumes fixed output
structure, different optimization algorithm

e Generalization of the hierarchical multilabel classifier HM* (Rousu et al.
2005;2006) to fixed general graphs.
e Based on Conditional Random Field model over a network of outputs:
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NCl-cancer Dataset
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e NCl-cancer dataset contains > 4000
molecules with anti-cancer activity
against ~60 cancer celllines (cancer
types).

e Histogram shows the distribution of b N
molecules according to the activity. °

e Each bar contains molecules active
against given number of targets
o Skewed multilabel distribution 81
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e Heatmap shows the similarity between
pair of activity groups.

e Inactive molecules are mutually similar

e So are molecules that are active against
all targets

e And the extremes are similar to each
other
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Output representation: embedding of a labeled network

o No pre-existing structure between the
drug targets, but lots of microarray data H
on the cell lines them selves: - AT,
Reverse-phase lysate, cDNA, Affymetric :
HU6800, miRNA, ABC transporter
Radiation RNA array

e Each gives a correlation matrix between
the cell lines (how similarly the cell lines
respond)

Overall prec

e Extract network from the correlation
matrix: Maximum weighted spanning
tree, Correlation thresholding, ...

e Multilabel y induces a labeling of the
network

e Embed the (labelled) network to a feature
space: te,u(y) = 1 iff in multilabel y edge
e is labeled v, u € {00,01,10,11}
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Input representation: Kernels over molecular graphs

e Various kernels applicable for molecular
graphs, and have previously been used in
single-label molecular classification tasks

e Walk kernels (top picture): count
matching walks (e.g.
C-O-C-C-C-0-C-C-C) in two molecular
graphs

e Weighted decomposition kernel
(middle): matches neighbourhoods of
same-labeled nodes in two molecular
graphs

e Tanimoto kernel (bottom): kernel over
user-defined salient substructures
(molecular fingerprints)

e Tanimoto works the best
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Joint feature map (x,y)

e Learning happens in feature space joint for inputs and outputs

e The feature map contains products of all input (molecule graph) and
output feature (edge-labeling) pairs via the tensor (outer) product:

w(x,¥) = o(x) ® P(y)

e The formulation lets us learn context (edge-labeling) specific feature
weights for a global set of input features

e No assumption of alignment between input and output features
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Learning MMCRF: overview

The MMCRF framework consists of the following components

e Max-margin learning: Maximize the margin between real example
»(xi,yi) and all the incorrect pseudo-examples ¢(xi,y), whilst
controlling the norm of the weight vector

e Use of kernels K(x, x") to tackle high-dimensionality of input feature
maps

e Use of graphical model techniques for tackle the exponential size of the
multilabel space
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Data preprocessing
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e Three versions of the dataset prepared

e Full data.

e With no zero active molecules (group 0
removed.

e With middle-active molecules (groups 3
0-10 and 50-59 removed) o | e ol

e 5-fold stratified cross-validation used: o o BB W

Number of active cell lines

Frequency of molecules
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e divide each activity group into 5-folds

® merge across groups to create global s
folds

e ensures that each group is represented
in each fold
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Prediction Accuracy/F1: Full Data

e The scatter plots show prediction accuracy (left) and F1 (right) of
MMCREF (y-axis) against SVM (x-axis) for each cell line (blue dots)

e In terms of accuracy the two methods work equally well
e In terms of F1, MMCRF better than SVM

F1 score (all molecules)
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Prediction Accuracy/F1: Zero-actives removed

e The scatter plots show prediction accuracy (left) and F1 (right) of
MMCREF (y-axis) against SVM (x-axis) for each cell line (blue dots)

o MMCREF significantly better in terms of accuracy and F1
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Prediction Accuracy/F1: Middle-actives only

e The scatter plots show prediction accuracy (left) and F1 (right) of
MMCREF (y-axis) against SVM (x-axis) for each cell line (blue dots)

o MMCREF significantly better in terms of accuracy and F1
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e The plot shows the running
time required for training
MMCRF (1 multilabel
model) and SVM (libsvm)
(59 single label models).

e MMCRF (native Matlab

code) scales better than
libsvm (C++) on large

datasets
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Conclusions

e We proposed a structured output prediction approach for the
classification of drug-like molecules.

e It is, to our knowledge, the first multilabel classification approach for
the problem.

e The method is able to utilize the the statistical dependencies between
multiple labels by means of a network constructed from auxiliary data
available for the targets.

e In our experiments, the MMCRF outperforms the state-of-the-art SVM
e Future work includes

e studying the effect of the output structure to predictive accuracy
(learning algorithms, tree vs. general graph, other graph-theoretic
properties)

o better tackling of the skewness of the multilabel distribution

e deeper look at cell line and drug molecule properties that explain
good/bad performance
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