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Introduction

High dimensional data sets typically consist of several thousand covariates and a much
smaller number of samples.

Analysing such data is statistically challenging, as the covariates are highly correlated,
which results in unstable parameter estimates and inaccurate prediction.

To alleviate this problem, we have developed a statistical model that uses a small
number of meta-covariates inferred from the data through a Gaussian mixture model,
rather than all the original covariates, to classify samples.

The novelty of our approach is that our meta-covariates are formed considering
predictor-outcome correlations as well as inter-predictor correlations.
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Possible benefits

This idea was partly inspired by recent empirical research that has shown that optimum
predictive performance often corresponds to an intermediate trade-off between the
purely generative and purely discriminative approaches to classification.

The main advantage over using a sparse classification model is that we can extract a
much larger subset of covariates with essential predictive power and partition this
subset into groups, within which the covariates are similar.

Moreover, our meta-covariates have a natural ordering and interpretation as
increasingly predictive response-relevant clusters.
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Model overview

Here, the meta-covariate method is applied to gene expression data. Co-expression
clusters are identified and represented by its mean. Each cluster mean is assigned a
weight according to its ability to distinguish between set A and set B data.
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Model notation

X Design matrix N×D X = [x1, . . . , xD]
t Response vector N×1 tn ∈ {0, 1}
θ Matrix of clustering mean parameters θkn K×N K meta-covariates θk

Σ Matrix of clustering variance parameters K×N σ2
kn

π Vector of mixing coefficients K×1 πk

Z Matrix of clustering latent variables D×K zdk ∈ {0, 1}
w0 Regression bias parameter 1×1 Scalar intercept
w Vector of regression coefficients K×1 wk

y Vector of classification auxiliary variables N×1 yn
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Conditional dependency structure

y t

w

θX

Σπ

Z

w0

Joint distribution:

p(t, y,X ,Z ,π, θ,Σ,w0,w) = p(t, y|θ,w0,w)p(X ,Z |π, θ,Σ)p(π)p(θ|Σ)p(Σ)p(w0)p(w).
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Model components

Generative component:

p(X ,Z |π, θ,Σ) =
DY

d=1

KY
k=1

π
zdk
k N (xd |θk ,Σk )zdk , where Σk = diag(σ2

k1, . . . , σ
2
kN).

Discriminative component:

p(t, y|θ,w0,w) =
NY

n=1

p(tn|yn)p(yn|θn,w0,w), where

p(tn|yn) =

(
δ(yn > 0) if tn = 1
δ(yn ≤ 0) otherwise

and p(yn|θn,w0,w) = N (yn|w0 + wT θn, 1).

Prior distributions:

p(π) = const, p(θ|Σ) =
KY

k=1

N (θk |θ0, hΣk ),

p(Σ) =
KY

k=1

NY
n=1

Inv-Gamma
“
σ2

kn

˛̨̨
ν, ξ
”
, p(w0) = N (w0|0, l0) and p(w) = N (w|0, l I).
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EM algorithm: the E-step

γ(zdk ) =
πk
`Q

n σ
2
kn

´−1/2
exp

n
− 1

2

P
n

(xnd−θkn)2

σ2
kn

o
P

j πj

“Q
n σ

2
jn

”−1/2
exp


− 1

2

P
n

(xnd−θjn)2

σ2
jn

ff ,

E(yn) =

8<:w0 + wT θn + φ(−w0−wT θn)

1−Φ(−w0−wT θn)
if tn = 1

w0 + wT θn − φ(−w0−wT θn)

Φ(−w0−wT θn)
otherwise.
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EM algorithm: the M-step

θkn =

“
E(yn)− w0 −

P
k′ 6=k wk′θk′n

”
wk + 1

σ2
kn

“PD
d=1 γ(zdk )xnd + θ0n

h

”
w2

k + 1
σ2

kn

“PD
d=1 γ(zdk ) + 1

h

” ,

σ2
kn =

PD
d=1 γ(zdk )(xnd − θkn)2 + 1

h (θkn − θ0n)2 + 2ξPD
d=1 γ(zdk ) + 2ν + 3

,

πk =
1
D

DX
d=1

γ(zdk ),

w0 =

PN
n=1

“
E(yn)−

PK
k′=1 wk′θk′n

”
N + 1

l0

,

w =

„
θθT +

1
l

I
«−1

θ (E(y)− w01) .

Note that the first component of w is set to 1, so that the model is identifiable.
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Insights into salt-sensitive hypertension

Hypertension is a common precursor to cardiovascular disease and is often
exacerbated by increased dietary intake of sodium.

The stroke prone spontaneously hypertensive rat (SP) is an excellent model of human
essential hypertension that exhibits salt sensitivity.

By analysing microarray data of the SP, a salt-insensitive strain (WKY) and an
intermediate congenic strain (2a), the genes and pathways that influence salt-sensitive
hypertension can be elucidated.
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A highly influential cluster of 13 genes

Characterising cluster 13 of the meta-
covariate model with K = 20 clusters
suggested by BIC. The expression of
all 13 genes (left top); the mean ex-
pression (left middle) and alternative
θ (meta-covariate) representation (left
bottom).
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RP analysis of this cluster

The genes in cluster 13, overlaid
with 2a (left top), WKY (right top) and SP
(left bottom) rank products results: red
indicates over-expression on salt, while
green indicates under-expression on salt.

Keith Harris (University of Glasgow) Generative and Discriminative Bayesian Model October 16th 2010 12 / 20



Circadian rhythm genes are implicated

Canonical pathway analysis of cluster 13 shows that this cluster is enriched for
circadian rhythm genes, implicating circadian rhythm genes as important in
differentiating between salt-loaded and non salt-loaded animals.

This is relevant, given that these noctural animals exhibit increased hypertension
during the night, and this difference is exacerbated on salt-loading.

Now we consider how these genes are related to the strains. We saw from the RP
analysis of cluster 13 that there are differences on salt-loading in the 2a and WKY
strains, but not in the SP strain.

We can therefore hypothesize that the genes in the most influential meta-covariate
cluster are protective against hypertension in response to an increase in dietary
sodium.
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Extension to Gibbs sampling

The full conditional distribution for π:

Dirichlet

 
DX

d=1

zd1 + 1, · · · ,
DX

d=1

zdK + 1

!
.

The full conditional distribution for θkn:

N ((enwk + mkn)vkn, vkn), where en = yn − w0 −
X
k′ 6=k

wk′θk′n,

mkn =
1
σ2

kn

 
DX

d=1

zdk xnd +
θ0n

h

!
and vkn =

"
w2

k +
1
σ2

kn

 
DX

d=1

zdk +
1
h

!#−1

.

The full conditional distribution for σ2
kn:

Inv-Gamma

 
1
2

DX
d=1

zdk + ν +
1
2
,

1
2

DX
d=1

zdk (xnd − θkn)2 +
1

2h
(θkn − θ0n)2 + ξ

!
.
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Extension to Gibbs sampling continued

The full conditional distribution for w0:

N

0@PN
n=1

“
yn −

PK
k′=1 wk′θk′n

”
N + 1

l0

,

„
N +

1
l0

«−1
1A .

The full conditional distribution for w:

N

 „
θθT +

1
l

I
«−1

θ (y− w01) ,

„
θθT +

1
l

I
«−1

!
.

The full conditional distribution for zd : Multinomial(ntrials, p1, . . . , pK ), where ntrials = 1
and pk = γ(zdk ).

The full conditional distribution for yn:

p(yn|y−n,π, θ,Σ,w0,w, t,X ,Z ) ∝

(
δ(yn > 0)N

`
yn|w0 + wT θn, 1

´
if tn = 1

δ(yn ≤ 0)N
`
yn|w0 + wT θn, 1

´
otherwise.
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Posterior predictive distribution

We obtain the predictive classification of a new observation t∗, conditioning on the test
point x∗, using the Monte-Carlo estimate:

P(t∗ = 1|x∗, t,X ) ≈ 1
m

mX
t=1

Φ
“

w (t)
0 + w(t)T

θ∗(t)
”
,

where w (t)
0 , w(t) and θ∗(t) are the MCMC samples of the parameters w0, w and θ∗.

Thus, we also need to sample θ∗k from:

N

0@PD
d=1 zdk x∗d +

θ∗0
hPD

d=1 zdk + 1
h

,

"
1
σ∗2k

 
DX

d=1

zdk +
1
h

!#−1
1A ,

and σ∗2k from:

Inv-Gamma

 
1
2

DX
d=1

zdk + ν +
1
2
,

1
2

DX
d=1

zdk (x∗d − θ∗k )2 +
1

2h
(θ∗k − θ∗0 )2 + ξ

!
.
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Hedenfalk’s breast cancer data

We apply our method to a publicly available breast cancer dataset from patients
carrying mutations in the predisposing genes, BRCA1 or BRCA2, and from patients not
expected to carry either of these hereditary predisposing mutations.

D = 3226, N = 22 (7 BRCA1, 8 BRCA2 and 7 sporadic).

A Wilcoxon rank-sum test was used to provide a ranking of the features based on their
p-value. Setting a threshold of 10% the number of features was reduced to 626.

We use our method to classify BRCA1 versus the others and compare our method to a
Bayesian sparse probit regression model.

We initialised our Gibbs sampler using the EM algorithm.

We ran the Gibbs samplers of both methods for 100000 iterations and discard the first
half of each chain as burn-in.

We compared the methods using leave-one-out cross validation.
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Plots of the posterior predictive probabilities
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Conclusions

Our experimental results thus indicate that our Gibbs sampling approach of inferring
meta-covariates in classification has competitive performance with Bayesian sparse
probit regression.

Moreover, our approach can be naturally extended to multiclass classification.

Future research will focus on applying our methodology to functional magnetic
resonance imaging data and developing a Bayesian sampler that can infer directly from
the data the optimal number of clusters in our model via an infinite mixture model.
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