# Exploring Transcriptional Regulation through Genetic Dissection

Nir Friedman

Hebrew University

"This might be a cool problem, they have tons of data"

"This might be a cool problem, they have tons of data"
"What does `ribosome' mean?"

"Why everyone perks up when I say P53?"

"This might be a cool problem, they have tons of data"
"What does `ribosome' mean?"

"Why everyone perks up when I say P53?"

"Check out latest Nature paper by Young"

- "Why everyone perks up when I say P53?"
- "Check out latest Nature paper by Young"
- \*"The ribosome genes are up, are you sure this is a late time point sample?"

- "Why everyone perks up when I say P53?"
- "Check out latest Nature paper by Young"
- "The ribosome genes are up, are you sure this is a late time point sample?"
- "Next time when you do this, run the sample through BioAnalyzer as well"

- "Why everyone perks up when I say P53?"
- "Check out latest Nature paper by Young"
- \*"The ribosome genes are up, are you sure this is a late time point sample?"
- "Next time when you do this, run the sample through BioAnalyzer as well"
- "To check this, you should rerun without salt"

- "Why everyone perks up when I say P53?"
- "Check out latest Nature paper by Young"
- \*"The ribosome genes are up, are you sure this is a late time point sample?"
- "Next time when you do this, run the sample through BioAnalyzer as well"
- "To check this, you should rerun without salt"
- "Who moved my pipette?!?!"





### **Big Question**



### **Big Question**



• What determines specific expression of each gene?



Gasch et al, Mol. Bio Cell. 2000



Friday, October 15, 2010

- Transcription factors bind to regulatory regions



- Transcription factors bind to regulatory regions
- Recruitment of Polymerase II



- Transcription factors bind to regulatory regions
- Recruitment of Polymerase II
- Transcription





Friday, October 15, 2010

#### **Key Questions**

#### Mechanisms

- Signal transduction
- Transcriptional regulation
- Chromatin



#### **Key Questions**

#### **Combinatorial Interactions**

- Enormous number of responses (modules)
- Limited number of signaling pathways and TFs













WT















~240 Hog1 & Msn2/4-pathway activated genes

### Single KOs Provide Limited Information

Msn2/4 dependent genes


Msn2/4 dependent genes





Msn2/4 dependent genes

































#### **Combinatorial Network**



 Hog1 response is mediated through a dense overlapping regulatory circuit
Why?

## Information Flow



# Information Flow



## Information Flow



#### Modulation via Network Reconfiguration



 Cross-talk between Hog1 pathway and general stress response, and Slt2 pathway

## **Regulation: Beyond TFs**



## **Regulation: Beyond TFs**



# **Regulation: Beyond TFs**

5



#### What are suitable phenotypes?

- mRNA levels
- reporter protein levels















Cell-to-cell variability as phenotype

- Difference from mean expression?
- Relations to mechanism?

























## **Screening for Variability**

Experiment design

- Build fluorescent protein reporter for target promoter
- Cross with KO library
- Scan fluorescence levels in cells from each KO


# **Screening for Variability**

Experiment design

- Build fluorescent protein reporter for target promoter
- Cross with KO library
- Scan fluorescence levels in cells from each KO



#### Luckily, the data was already collected

#### **UPRE Screen**

Jonikas et al, Science 2009

#### **UPRE Screen**

Comprehensive Characterization of Genes Required for Protein Folding in the Endoplasmic Reticulum

Martin C. Jonikas,<sup>1,2,3,4</sup> Sean R. Collins,<sup>1,3,4</sup> Vladimir Denic,<sup>1,3,4\*</sup> Eugene Oh,<sup>1,3,4</sup> Erin M. Quan,<sup>1,3,4</sup> Volker Schmid,<sup>5</sup> Jimena Weibezahn,<sup>1,3,4</sup> Blanche Schwappach,<sup>5</sup> Peter Walter,<sup>2,3</sup> Jonathan S. Weissman,<sup>1,3,4†</sup> Maya Schuldiner<sup>1,3,4‡</sup>

### **UPRE Screen**



Comprehensive Characterization of Genes Required for Protein Folding in the Endoplasmic Reticulum

Martin C. Jonikas,<sup>1,2,3,4</sup> Sean R. Collins,<sup>1,3,4</sup> Vladimir Denic,<sup>1,3,4\*</sup> Eugene Oh,<sup>1,3,4</sup> Erin M. Quan,<sup>1,3,4</sup> Volker Schmid,<sup>5</sup> Jimena Weibezahn,<sup>1,3,4</sup> Blanche Schwappach,<sup>5</sup> Peter Walter,<sup>2,3</sup> Jonathan S. Weissman,<sup>1,3,4†</sup> Maya Schuldiner<sup>1,3,4‡</sup>





Jonikas et al, Science 2009











## **Sources of Variability**

Closed chromatin

Open

chromatin



Protein

mRNA

### **Sources of Variability**

#### Local

Closed chromatin

Open

chromatin



Protein

mRNA

#### **Sources of Variability**

















#### Cell size and granularity help differentiating global & local variability

- Linear regression model to estimate (co)-variability
- Take into account FSC/SSC

$$X = \alpha \cdot S + \beta \cdot C + \epsilon_X$$
  

$$G = \gamma_{0,G} + \gamma_{1,G} \cdot X + \epsilon_G$$
  

$$R = \gamma_{0,R} + \gamma_{1,R} \cdot X + \epsilon_R$$



$$\epsilon_G \sim N(0, \sigma_G^2)$$
  
 $\epsilon_R \sim N(0, \sigma_R^2)$ 

Local Variability  

$$\ell_G = \sigma_G / \mu_G$$
  
 $\ell_R = \sigma_R / \mu_R$ 

Global Variability  

$$g_G = \sqrt{\operatorname{Var}[G] - \sigma_G^2}/\mu_G$$
  
 $g_R = \sqrt{\operatorname{Var}[R] - \sigma_R^2}/\mu_R$ 









RFP log intensity

 $\Delta mud2$ 





 $\Delta chd1$ 



 $\Delta mud2$ 





## **Detecting Variability Effects**



## **Detecting Variability Effects**



## **Detecting Variability Effects**



# **Correlated Global Variability**



# **Uncorrelated Local Variability**



# **Multiple Functions Affect Variability**

I ocal

Global



|                 | GO category               | GFP     | RFP                 | GFP | RFP                 |
|-----------------|---------------------------|---------|---------------------|-----|---------------------|
|                 | cellular bud<br>neck      |         |                     |     |                     |
|                 | regulation of cell size   |         |                     |     |                     |
|                 | meiosis                   |         |                     |     |                     |
|                 | purine synthesis          |         |                     |     | $\mathbf{\uparrow}$ |
|                 | recQ helicase             |         |                     |     |                     |
|                 | response to<br>DNA damage |         |                     |     |                     |
|                 | Telomere<br>maintenance   |         | $\mathbf{\uparrow}$ |     |                     |
|                 | Nuclear protein complex   |         |                     |     |                     |
|                 | Nucleosome<br>Assembly    |         |                     |     |                     |
| ctober 15, 2010 | SWR1                      | $\land$ |                     |     |                     |

|  | TecQ Helicase                        |                    |                     |                     |                     |
|--|--------------------------------------|--------------------|---------------------|---------------------|---------------------|
|  | <b>response to</b><br>DNA damage     | <b>℃</b>           | cal                 | Glol                | bal                 |
|  | Telomere<br>maintenance              | ſ                  |                     |                     |                     |
|  | Nuclear protein complex              |                    |                     |                     |                     |
|  | Negelexison of cell<br>Assembly      |                    |                     |                     |                     |
|  | She/Betis                            | $\mathbf{\hat{c}}$ |                     |                     |                     |
|  | <b>Poliliesyngatisis</b><br>Factor   |                    |                     |                     |                     |
|  | re BOLA elixposte                    | $\mathbf{\hat{c}}$ |                     |                     |                     |
|  | <b>tBsp</b> onse to<br>Diskification |                    |                     | $\mathbf{\uparrow}$ | $\mathbf{\uparrow}$ |
|  | <b>Peoteie</b> re<br>glydolsylatice  |                    | $\mathbf{\uparrow}$ | $\mathbf{\uparrow}$ |                     |
|  | Macieas protein<br>transferase       |                    |                     |                     |                     |
|  | Rictieiostoansport<br>Assembly       |                    |                     | $\mathbf{\uparrow}$ |                     |
|  | BRAD complex                         |                    |                     |                     |                     |
|  | Pol II elongation<br>Factor          |                    |                     |                     |                     |

Friday, October 15, 2010 SWR1









# **Searching for Mechanisms**

# Catalogue of protein complexes Identify complexes w/ coherent variability phenotype



# **Searching for Mechanisms**

# Catalogue of protein complexes Identify complexes w/ coherent variability phenotype


# **Searching for Mechanisms**

# Catalogue of protein complexes Identify complexes w/ coherent variability phenotype



# **Reducing Local Variability: CAF1**























# CAF1: Full Epistasis with RTT106



#### Hypothesis:

- Defects in CAF1 reduce nucleosome density
- Synergistic activity with RTT106
- Nucleosome remodeling more crucial for UPRE

### Increasing Local Variability: SWR1



### Increasing Local Variability: SWR1



### Increasing Local Variability: SWR1









- X is down-regulated in  $\Delta$ swr1 (published data)
- $\Delta X$  increases local UPRE noise

- X is down-regulated in  $\Delta$ swr1 (published data)
- ∆X increases local UPRE noise



- X is down-regulated in ∆swr1 (published data)
- ∆X increases local UPRE noise



- X is down-regulated in ∆swr1 (published data)
- ∆X increases local UPRE noise



# Increasing Global Variability: Elongator Complex

 Known functions: transcription elongation, tRNA modification



# **Implicating Specific Function**



 Variability "signature" implicates tRNA modification in high global variability of elongator

# Summary

Variability as a phenotype for genetic screens
Provides different perspective than mean

Clues to mechanism

Analysis of specific promoters across KO library

- Highlights interesting regimes of variability
- Systematic screen uncovers unexpected candidates

#### Prospects

- Using double KO for epistatic analysis
- Combination of multiple phenotypes

# Team Effort





Rinott Ariel Jaimovich



#### My lab

- Ayelet Rahat
- Ruty Rinott
- Ariel Jaimovich
- Tommy Kaplan
- Assaf Weiner
- Avital Klien
- Adam Nitzan

- Ohad Fried
- Noa Novershtern
- Naomi Habib
- Moran Yassour
- Aharon Novogordoski
- Ofer Meshi
- Tal El-Hay
- Eli Shapira

#### Collaborators

- •Andrew Capaldi
- •Erin O'Shea
- Aviv Regev
- •Hanah Margalit
- •Oliver Rando
- •Raz Kupferman