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Slippery Slope

*“This might be a cool problem, they have tons of data”
*“\What does ribosome’ mean?”

*“Why everyone perks up when | say P537?”

+“Check out latest Nature paper by Young”

*“The ribosome genes are up, are you sure this is a late
time point sample”?”

+“Next time when you do this, run the sample through
BioAnalyzer as well”

*“To check this, you should rerun without salt”
*“\Who moved my pipette?!?!”

Friday, October 15, 2010



Slippery Slope

Friday, October 15, 2010



Slippery Slope

Friday, October 15, 2010



Big Question




Big Question

Py e e

B
_

® What determines specific
expression of each gene!

Gasch et al, Mol. Bio Cell. 2000

Friday, October 15, 2010



Transcriptional Regulation 101

......................................................

...............................................

Friday, October 15, 2010



Transcriptional Regulation 101

- Transcription factors bind to regulatory regions

Friday, October 15, 2010



Transcriptional Regulation 101

- Transcription factors bind to regulatory regions
- Recruitment of Polymerase ||

Friday, October 15, 2010



Transcriptional Regulation 101

- Transcription factors bind to regulatory regions
- Recruitment of Polymerase ||
- Transcription

Pol li

Friday, October 15, 2010



Turgor Pressure

Sin1|

/X | Msn2/4|
MAPKK
g
@

TF

activation

-

—>

MAPK

Cytoplasm | Nucleus

Mbs2 The HOG1 pathway

>
/[ Sho1 -

Sko1
Hot1
Msn1
Smp1
Cinb
Skn7

Friday, October 15, 2010



Key Questions

Mechanisms

¢+Signal transduction

¢ Transcriptional regulation
¢Chromatin
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Key Questions

Combinatorial Interactions
¢*Enormous number of responses (modules)
¢Limited number of signaling pathways and TFs
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Gene Expression Data (Salt)

WT 5 hog1A msn2/4A

Fold induction
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+~240 Hog1 & Msn2/4-pathway activated genes
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Combinatorial Network
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Why?
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Information Flow
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Modulation via Network
Reconfiguration
Environmental

Environmental Condition condition
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¢*Cross-talk between Hog1 pathway and general stress
response, and Slt2 pathway
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Regulation: Beyond TFs

Pho4 recruitment
and hyperacetylation

b Low P,

Nucleosome eviction
and gene activation
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Regulation: Beyond TFs

What are suitable phenotypes? )
* MRNA levels

 reporter protein levels

\
5\% & Wz DL @ *
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Variability as Phenotype

promoter

¢*Promoter activity reporter I T

Friday, October 15, 2010



Variability as Phenotype

promoter

—— ) =

Friday, October 15, 2010



Variability as Phenotype

promoter
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Variability as Phenotype

4 )
Cell-to-cell variability as phenotype

» Difference from mean expression?

 Relations to mechanism?
\_ /
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Screening for Variability

Experiment design
+Build fluorescent protein reporter for target promoter

¢+ Cross with KO library
¢Scan fluorescence levels in cells from each KO

PA-YFP pA-YFP pA-YFP
AX AY NZ

Different KOs
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Screening for Variability

Experiment design
+Build fluorescent protein reporter for target promoter

¢+ Cross with KO library
¢Scan fluorescence levels in cells from each KO

PA-YFP pA-YFP pA-YFP
AX AY NZ

Different KOs

4 )
Luckily, the data was already collected
N /

Friday, October 15, 2010



UPRE Screen

Jonikas et al, Science 2009
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UPRE Screen

Comprehensive Characterization of Genes Required for Protein Folding in the
Endoplasmic Reticulum

Martin C. Jonikas,l'z'3'4 Sean R. Collins,1'3'4 Viadimir Denic,1'3'4:‘ Eugene 0h,1'3'4 Erin M. Quan,l'3'4
Volker Schmid,S Jimena Weibezahn,l'3'4 Blanche Schwappach,5 Peter Walter,z'3

Jonathan S. Weissm.‘an,l'?’AJr Maya Schuldinerl34*

Jonikas et al, Science 2009
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UPRE Screen
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Endoplasmic Reticulum

Martin C. Jonikas,1*434 Sean R. Collins,}** viadimir Denic,134° Eugene Oh,134 Erin M. Quan,134
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Jonikas et al, Science 2009
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UPRE Screen

Flow cytometer
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UPRE Screen
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UPRE Screen
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Estimating Variability
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Estimating Variability
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Global Noise and FSC/SSC
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Global Noise and FSC/SSC
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Global Noise and FSC/SSC
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Global Noise and FSC/SSC
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Estimating Variability

KO strain

¢Linear regression model
to estimate (co)-variability

*Take into account FSC/SSC ||| -~

X = - S -+ 6 . C -+ ' i [Yoa, Ym):.-
G = Y0.G T V1,G X + €g €cq N(O, Oé)
R = ’YO,R—F”}/LR'X—FER GRNN(O,O%)
Local Variabllity Global Variability
lg = o/l gG = \/Vaf_G_ — o0/l

lr=o0Rr/UR gr = \/\/ar:R: — 0h/ IR
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Example
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GFP log intensity

-

RFP log intensity

GFP log intensity
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RFP log intensity

RFP log intensity

RFP log intensity
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Example
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GFP log intensity

RFP log intensity

RFP log intensity

intensity
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Correlated Global Variability
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Uncorrelated Local Variability
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Multiple Functions =
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Phenotypes: Variability vs. Mean

+ 1337 non-overlapping functional annotations

*Hypergeometric enrichment in extreme residues
(FDR < 0.05)

Mean

Variability phenotype

phenotype

49 14 36
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Phenotypes: Variability vs. Mean

+ 1337 non-overlapping functional annotations

*Hypergeometric enrichment in extreme residues
(FDR < 0.05)

Mean

Variability phenotype

phenotype

49 14 36

\-Ribosome
*RNA catabolic process
*tRNA processing
« SWR1

e Cellular bud neck
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Phenotypes: Variability vs. Mean

+ 1337 non-overlapping functional annotations

*Hypergeometric enrichment in extreme residues
(FDR < 0.05)

Mean

Variability phenotype

phenotype
49 14 36

\-Ribosome
*RNA catabolic process
*tRNA processing
« SWR1

v
* Cellular bud neck - ER-associated processes
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Searching for Mechanisms

¢Catalogue of protein complexes
¢|dentify complexes w/ coherent variability phenotype

0.2 +

0.1

GFP local CV

16 12 12 {6
mean GFP intensity
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Searching for Mechanisms

¢Catalogue of protein complexes
¢|dentify complexes w/ coherent variability phenotype
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Searching for Mechanisms

¢Catalogue of protein complexes
¢|dentify complexes w/ coherent variability phenotype
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Reducing Local Variability: CAF1

¢Chromatin assembly

iIncorporates H3/H4 dimer
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Changes in Local Variability:
Direct or Indirect Effect?
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Changes in Local Variability:
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Changes in Local Variability:
Direct or Indirect Effect?
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CAF1: Full Epistasis with RTT106

Artt106 AX

CAF1, H3/4
* WT

Local UPRE variability

mean log-UPRE

Hypothesis:

¢Defects in CAF1 reduce nucleosome density
¢*Synergistic activity with RTT106

*Nucleosome remodeling more crucial for UPRE
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Increasing Local Variability: SWR1
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Increasing Local Variability: SWR1
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Increasing Local Variability: SWR1

Local UPRE variability
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Changes in Local Variability:
Direct or Indirect Effect?
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Changes in Local Variability:
Direct or Indirect Effect?
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Indirect Mechanism

¢Search for genes X such that:
* X is down-regulated in Aswr1 (published data)
* AX Increases local UPRE noise
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Indirect Mechanism

¢Search for genes X such that:
* X is down-regulated in Aswr1 (published data)
* AX increases local UPRE noise
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Indirect Mechanism

¢Search for genes X such that:
* X is down-regulated in Aswr1 (published data)

* AX increases local UPRE noise
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Increasing Global Variability:

Elongator Complex

¢+Known functions:
transcription elongation, tRNA modification

Elongator
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Implicating Specific Function
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+Variability “signature” implicates tRNA modification in
high global variability of elongator
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Summary

+Variability as a phenotype for genetic screens
°* Provides different perspective than mean
®* Clues to mechanism

¢+ Analysis of specific promoters across KO library
°* Highlights interesting regimes of variability
* Systematic screen uncovers unexpected candidates

Prospects
+Using double KO for epistatic analysis
¢ Combination of multiple phenotypes
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