IDENTIFYING PROTEINS INVOLVED IN PARASITISM BY DISCOVERING DEGENERATED MOTIFS

Celine Vens^{1,2}, Etienne Danchin², Marie-Noëlle Rosso²

- ¹Dept. of Computer Science, Katholieke Universiteit Leuven, Belgium
- ² Institut National de la Recherche Agronomique, Sophia-Antipolis, France

CONTENT

- Introduction
- Method
- Results
- Conclusion

CONTEXT

- Meloidogyne Incognita
 - Plant-parasitic nematode
 - Major crop devastator
 - Annotated genome sequence

CONTEXT

- Sophisticated interactions with plants
 - penetration of root tissue
 - establishment of a feeding site

- Set of effector proteins is crucial for these processes
- Goal: identifying complete set of secreted effectors
- Common conserved motif(s)?
- Emerging motifs, positive and negative set needed

DATA

- 100 "positive" proteins
 - 59 with expression in secretory glands
 - 38 with identification in secretome
 - 3 translated EST contigs identified with mass-spectroscopy
- 459 "negative" proteins
 - 7 proteomes: M. incognita, M. hapla, B. malayi, P. pacificus, C. elegans, C. briggsae, D. melanogaster
 - take proteins that have orthologs in all 7 organisms, and are present as a single copy in each of them (OrthoMCL)

MOTIF DISCOVERY

- Identifying motifs in protein sequences important challenge
- Can identify proteins involved in the same biological process
- All existing methods search motifs at the amino acid level
- Conservation of physico-chemical properties more important than conservation of amino acids
- Motifs that include properties: < L I small D D acidic >

PHYSICO-CHEMICAL PROPERTIES

There exist several classifications of amino acids

Betts&Russell(2003)

PHYSICO-CHEMICAL PROPERTIES

Residues:	ala	arg	asn	asp	cys	glu	gln	gly	his	ile	leu	lys	met	phe	pro	ser	thr	trp	tyr	val
Atom Set	A	R	N	D	С	Е	Q	G	Н	I	L	K	M	F	P	S	Т	w	Y	v
acidic				*		*														
acyclic	*	*	*	*	*	*	*	*		*	*	*	*			*	*			*
aliphatic	*							*		*	*									*
aromatic									*					*				*	*	
basic		*							*			*								
buried	*				*					*	*		*	*				*		*
charged		*		*		*			*			*								
cyclic									*					*	*			*	*	
hydrophobic	*							*		*	*		*	*	*			*	*	*
large		*				*	*		*	*	*	*	*	*				*	*	
medium			*	*	*										*		*			*
negative				*		*														
neutral	*		*		*		*	*	*	*	*		*	*	*	*	*	*	*	*
polar		*	*	*	*	*	*		*			*				*	*			
positive		*							*			*								
small	*							*								*				
surface		*	*	*		*	*	*	*			*			*	*	*		*	

Rasmol

TASK DESCRIPTION

Given

- a set of positive proteins, and a set of negative proteins
- frequency thresholds fpos, fneg
- a classification of amino acids

■ Find all motifs

- that are frequent in the positives (frequency $\geq = fpos$)
- that are infrequent in the negatives (frequency <= fneg)</p>
- using specific amino acids and properties/classes

CONTENT

- Introduction
- Method
- Results
- Conclusion

MERCI

- MERCI: Motif EmeRging and with Classes Identification
- Generate-and-test approach
 - Look for frequent motifs and meanwhile check their infrequency
 - Structure all possible motifs using a "more general than" relation
 - Traverse the structure from general to specific, such that
 - each relevant motif is considered
 - no motif is considered more than once

GENERALITY ORDER

- A C D > more general than < A C D E >
- < small C D > more general than < A C D >
- Generality ordering between classes

CANDIDATE GENERATION

- Candidate generation
 - add top-level element of the property DAG to the end of the pattern
 - minimally specialize the last element of the pattern
- Depth first traversal of lattice

CANDIDATE PRUNING AND TESTING

- Exploit anti-monotonicity:
 - If $freq(M,pos) \le fpos$, then prune
- [small polar] [small hydrophobic] [small] [tiny] [P] [N] [D] [T] [N]

 [tiny polar polar] [tiny polar hydrophobic] [tiny polar small] [tiny charged] [tiny Q]
 - If $freq(M,neg) \le fneg$, then no need to test children
- Checking frequency in positive set:
 - only check sequences containing parents (vertical id-list format)
 - only if all parents are frequent
- Checking infrequency in negative set:
 - stop counting when *fneg* is exceeded

CONTENT

- Introduction
- Method
- Results
- Conclusion

SOME RESULTS

- Search motifs specific for M. incognita effectors
- Parameter *fneg* was set to 0 in all experiments
 - motifs specific for positive proteins
- Parameter fpos was adapted to get manageable set of motifs

SOME RESULTS

- Without properties
 - *fpos* = 5
 - 6 motifs

Classific. Motif		freq(Motif,F			
None		5			
	<asky></asky>	5			
	<egag></egag>	6			
	<l i="" l="" s=""></l>	8			
	<t i="" l=""></t>	5			
	<t i="" l="" s=""></t>	5			

- coverage of 21 positive sequences
- Betts & Russel classification
 - *fpos* = 12
 - 76 motifs

Betts and	<hydro hydro="" polar="" small="" small<="" th=""><th>15</th></hydro>	15
Russell	tiny small charged polar small polar>	
	<small polar="" small="" small<="" td=""><td>14</td></small>	14
	hydro small small small polar	
	hydro polar hydro small>	

top 2 motifs: coverage of 22 positive sequences

RASMOL CLASSIFICATION

- Signals that control destination of proteins at Nterminal region
- Search in first 30 positions
- Maximal motif length of 15
- *fpos* = 35
- 97 motifs, covering 68 positive sequences
- Corresponds with SP

RASMOL CLASSIFICATION

- 66 of 97 motifs specific for SP positives
 - They cover
 - 56 of 57 SP positives
 - 0 non-SP positives
 - 0 negatives (includes SP sequences)
- Subset of 4 motifs with same coverage

< large hydrophobic neutral buried neutral buried buried neutral acyclic acyclic hydrophobic neutral acyclic acyclic>	35
<neutral acyclic="" buried="" hydrophobic="" large="" neutral=""></neutral>	38
<hydrophobic acyclic="" buried="" large="" neutral="" polar=""></hydrophobic>	35
<neutral acyclic="" buried="" hydrophobic="" l="" neutral=""></neutral>	35

EVALUATING THE 4 MOTIFS

- 12% of proteome of M. Incognita covered (2,579 of 20,359 proteins)
- 80% of them have predicted SP
 (only 17% of proteome has predicted SP)
- 7 of 8 positive control PCWD proteins covered
- Covered proteins contain 21 of 26 additional candidate PCWD proteins

CONTENT

- Introduction
- Method
- Results
- Conclusion

CONCLUSION

- Finding conserved motifs in biological sequences
- Biological system of interest: protein secretion of plant parasitic nematode
- MERCI: find discriminative motifs that use physicochemical properties
- Works with user defined classifications
- Contribution to goal of identifying the whole set of effectors in M. incognita

MERCI:-)

http://dtai.cs.kuleuven.be/ml/systems/merci