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Inferring regulatory networks is a challenging problem
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Gene expression can be measured

| perturbation |—> ?

input output

Input : perturbation to the system (e.g. gene overexpression)
Output : measure response to perturbation



Expression data is used to infer the network
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A weight is learned for each edge

Target gene

gene 1 | gene 2 gene p
gene 1 - 0.05 0.56
Regulating | gene 2 | 0.19 - 0.03
gene
gene p 0.11 0.42 -
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The inference problem decomposes into p sub-problems
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Tree-based ensemble methods are good candidates

Non-parametric

! !
@ Can deal with interacting features
l

Work well with high-dimensional
datasets

Scalable
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The tree-based model is informative

The learned model can be used to find the

Importance

most relevant inputs.
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The variable importance is based on variance reduction
At each tree node N :

I(N) = #S5Var(S) — #5;Var(S;) — #S¢Var(Sf)

S : set of samples reaching node N/
S: (resp. Sf) : subset of S for which the test is true (resp. false)
Var(.) : variance of output variable in a subset

For a single tree :

¢ = sum of | at each node where variable i appears

For an ensemble of trees :
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GENIE3 uses ensembles of trees to infer a network

Expression data
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A normalization is required
For an unpruned tree :

g wij ~ NVar;(S)
i#j
w;_,j : importance of gene i for the prediction of gene j
N : number of experiments

Var;(S) : variance of gene j in the learning sample from which the tree is built

!

Positive bias for edges towards highly variable genes

I

Normalization of gene expressions
so that they have unit variance
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GENIES3 is best performer in DREAM4 challenge

DREAMA4 In silico Multifactorial network challenge :
inference of synthetic regulatory networks.

5 networks of 100 genes, 100 experiments per network.

Rank Team Mean Overall Mean Overall
AUPR | AUPR p-value | AUROC | AUROC p-value

1 GENIE3-Bagging 0.22 5.93e-54 0.76 1.93e-28

2 Team 549 0.14 7.45e-35 0.73 6.29e-23

AUPR : Area Under Precision-Recall curve

AUROC : Area Under ROC curve
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Quality of ranking decreases with in-degree of genes

In-degree =

number of regulators
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GENIES3 is able to predict a directed network

Predicted networks contain a significant number of asymmetric

links.

100

Mean
asymmetry
(%)

52%

95%

GENIE3-Bagging

Gold standard

19/25



GENIE3 can be used for directing an undirected network

Error on edge directionality :
i — j present in gold standard

Jj — i not present in gold standard

Wij < Wjj

At 5% recall, mean error rate on edge directionality is 20%.
g
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Results on E. coli are competitive to existing approaches
1471 genes, 907 experiments. Validation with RegulonDB.
Input genes = 172 known TFs
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CLR : Faith et al. (2007) ARACNE : Margolin et al. (2006)
MRnet : Meyer et al. (2007) GGM : Schafer et al. (2005)
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Results on E. coli are competitive to existing approaches
1471 genes, 907 experiments. Validation with RegulonDB.
Input genes = all genes
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CLR : Faith et al. (2007) ARACNE : Margolin et al. (2006)
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Conclusions

Good results for a non parametric approach
Scalable
Can be easily parallelized

Adaptable to other types of genomic data and interactions
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Future works

Improvement on the way variable importance scores are normalized
Threshold on the ranking of interactions

Comparison with Bayesian networks
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Software :
http ://www.montefiore.ulg.ac.be/~huynh-thu/software.html
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