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van Leeuwenhoekʼs 
microscope
(late 1600s) modern robotic microscope

More relevant for 
systems biology

More in need of 
machine learning
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Image data are exciting.

You should join us in working on them.
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1. The Imaging Platform at the Broad Institute

2. CellProfiler – image-analysis software

3. Iterative training of a boosting classifier for a particular (possibly rare) 
cellular phenotype

4. Large-scale training of a classifier for subtle phenotype changes

5. Comparing heterogeneous populations of cells perturbed by small 
molecules or RNA inhibition

6. Discovering latent “phenotypes” by learning to scale image features using 
linear regression and a topic model

Outline
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Faculty member + lab Faculty member + lab

Faculty member + labFaculty member + lab

Imaging
platform

Sequencing platformChemical biology platform

The Broad Instituteʼs unusual organization

[phdcomics.com]
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Methods 
development

Image assay 
development

Software 
engineering

The Imaging Platform at the Broad Institute
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function [rgOut, varargout] = ImDAPI2Rg(imDAPIin, 
LoGDim, LoGHW, MinArea)

wiendim=[5 5];
 
rgLoG=fspecial('log',LoGDim,LoGHW);
imLoGout=imfilter(double(imDAPIin),rgLoG);
imLoGoutW=wiener2(imLoGout,wiendim);
rgNegCurve=imLoGoutW<-1;
 
%set outsides
rgNegCurve([1 end],1:end)=1;
rgNegCurve(1:end,[1 end])=1;
 
%Throw out noise, label regions
rgArOpen=bwareaopen(rgNegCurve,MinArea,4); 

Published raw 
source code

Advanced algorithms

Heavily customized, not 
generalizable

Requires programming skills 
+ a lot of time to adapt to 
new situations

Rarely applied outside the 
originating lab

Assay-specific
pre-packaged 

commercial software 
Fast 

Poor results on crowded cells 
or unusual cell types 

Designed for standard assays
Cell adhesion

Neurite outgrowth
Micronucleus formation

Protein translocation
Cell cycle analysis

Adipogenesis
Reporter gene analysis

Cell viability
Apoptosis

Cell migration
Often inflexible

Proprietary methods

Expensive

CellProfiler—why was new software needed?
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Convenient for biologists, convenient for algorithm comparisons
10
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Typical CellProfiler pipeline
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“Cytological profile”: collection of measurements describing the appearance of a cell

Measure everything first, ask questions later
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Phenotypes:
Cell count
Cell size

DNA content
Nuclear speckles

Cytoplasm/nucleus localization
Membrane localization

Protein or phospho-protein levels
Metastasis

Wound healing
Metaphase

Anaphase/telophase
Prophase

Shape/texture
Crescent-shaped nuclei

Peas-in-a-pod
Cells-on-the-move
Long projections

Crooked projections
Hyphae-like fingers

Actin at contractile ring/cell junctions
Internal actin
Actin circles

Large spread cells
Phospho-histone H3 nuclear dots

Bi/multinucleate

Cell types:
Drosophila Kc167 cells
Drosophila S2R+ cells

Drosophila epithelial tissue
Drosophila embryo
Human HT29 cells
Human A549 cells

Human TOV21G cells
Human H1299 lung carcinoma cells

Human biopsied prostate gland tissue
Human adult mesenchymal stem cells

Mouse NIH/3T3 cells
Mouse neural precursor cells derived from embryos

Mouse lung tissue sections
Mouse isolated germ cells

Rat H9c2 cells
C. elegans worms (preliminary)

Neurons (preliminary)
S. cerevisiae cells

Yeast colonies
Yeast growth patches

Array grids

Successful image-based assays
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www.cellprofiler.org
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http://www.cellprofiler.org
http://www.cellprofiler.org


CellProfiler around the world
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CellProfiler is downloaded 400x/month, 11,000x total (~50% USA, 90% non-profit institutions).

website visits,  April 2009 - April 2010
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 The CellProfiler project
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Selected high-throughput screens using CellProfilerSelected high-throughput screens using CellProfiler

Root lab, Cell, 2006 Screen for cell cycle regulators 

Alon lab, Nature Methods, 2006 High-throughput analysis of protein 
dynamics

Neefjes lab, Nature, 2007 Screen for levels of Salmonella 
typhimurium infection

Raff lab, PLoS Biology, 2008 Screen for centriole duplication and 
mitotic PCM recruitment 

Carpenter lab, PNAS 2009 & 
BMC Bioinformatics 2008

Screens for > 15 diverse phenotypes 
in human and Drosophila cells

Shokat lab, Cancer Cell, 2008 Screen for PI3K inhibitor resistance 
mutations in S. cerevisiae

Pelkmans lab, Nature, 2009 High-throughput infection assay

Ausubel lab,  ACS Chem Bio, 2009 Screen for inhibitors of infection by 
E. faecalis

CellProfiler’s is the 5th most-accessed Genome Biology paper of all time

Cited in >250 
papers as of 
Sept. 2010

free, at  www.CellProfiler.org
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Experiments we have completed recently
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Biological process/
phenotype Laboratory Samples tested

Number of 
fields of view 

(images) 
processed

Meiosis Terry Orr-Weaver (Whitehead) RNAi 84,000

Mitochondria Vamsi Mootha (HMS/MGH) chemicals 100,000

Morphology AstraZeneca chemicals 109,200

Cell cycle AstraZeneca chemicals 109,200

Breast cancer/Heregulin Eric Lander (Broad) RNAi 144,798

Tuberculosis Deb Hung (Broad) chemicals 164,000

Glioma David Sabatini & Bill Hahn (Whitehead, Harvard, 
Dana-Farber)

RNAi 286,000

Polyploidy: AMKL John Crispino (Northwestern University) chemicals, some RNAi 530,000

Hematopoetic stem cells David Scadden and Stuart Schreiber (HMS, MGH, 
Broad)

chemicals, some RNAi 465,448

Leukemic stem cells Gary Gilliland (BWH/HMS) chemicals, some RNAi 1,040,098

Hepatotoxicity Sangeeta Bhatia (MIT) chemicals 1,135,093
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Screens
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Add thousands of 
chemicals or RNAi 
agents, each one in a 
different sample

3

X X X X X X X

Thousands of samples

Hit
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Phosphorylated histone H3 – Mean
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DAPI and mean pHH3
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“Simple” phenotypes: one or two features is enough
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Example of complex phenotype: motile T47D cells
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– + +

Features associated with cell motility: lamellipodia, filopodia, 
polarized cell shape, F-actin nucleation at filapodia, less clumpingNormal T47D cells

Inducable by HRG

23



• How to get and crossvalidate with rare phenotypes?
• How to make classifier interpretable by biologist?
• Normalization of features?
• Dimensionality reduction?
• Prevent overfitting?
• Avoid having to tune parameters?

Challenges

24
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Crescent-shaped nuclei

Peas-in-a-pod

Cells-on-the-move

Crooked projections

Long projections

Actin at contractile 
ring/cell junctionsControl cells (HT29)

Hyphae-like fingers

[Jones et al., PNAS, 2009]

Rare phenotypes: HT29 colon cancer cells
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Yes

---

++

Rule

Iteration

No

[Jones et al., PNAS, 2009]

Iterative machine learning

Using gentle boosting [Friedman et al., 1998]
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Incorporated into CellProfiler Analyst
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Rules for distinguishing HRG-stimulated T47D cells
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(IF MeanSpeckles_AreaShape_Area > 12.000000, 0.827550, -0.350258) +
(IF Cells_AreaShape_FormFactor > 0.449767, -0.331746, 0.706321) +
(IF CellMembrane_Texture_3_CorrGreen_DifferenceVariance > 0.718124, 0.593955, -0.198424) +
(IF Cells_Intensity_CorrGreenSpeckle_MaxIntensity > 0.370382, 0.787301, -0.204062) +
(IF CellMembrane_Intensity_CorrGreenSpeckle_MinIntensityEdge > 0.001284, 0.275866, -0.500179) +
(IF Cells_Texture_3_CorrGreen_SumEntropy > 1.710600, -0.199515, 0.700658) +
(IF Nuclei_AreaShape_Perimeter > 96.669000, -0.177882, 0.788582) +
(IF Cells_Texture_3_CorrGreen_GaborY > 0.147318, -0.215618, 0.613682) +
(IF Cells_Intensity_CorrGreenSpeckle_StdIntensity > 0.033557, 0.742323, -0.169222) +
(IF Cells_Intensity_CorrGreenSpeckle_StdIntensityEdge > 0.009328, -0.118830, 0.956272)
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Multiple classes

29

Text
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QC and Tracking Down Hits

30
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The phenotype of motile T47D cells
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Features associated with cell motility: lamellipodia, 
filopodia, polarized cell shape, F-actin nucleation 

at filopodia, less clumpingNormal T47D cells

Stimulated by heregulinUnstimulated
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Built training set of ~300 cells

33
Adam 
Fraser
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Why cut out the human?
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HRG 
stimulation

Motility
Captured by the 
human-trained 

classifier
? Not captured

Metastasis
Tumor 
growth
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Labeling for automatic training set
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– + +

Stimulated by heregulinUnstimulated

Replicate 1 Replicate 2 Replicate 3

45 % motile cells 55 % motile cells
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Two ways to improve the classifier

36

Accuracy

x

x

Training set size

See [Banko & Brill, 2001]
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Random Fourier features

37
[Rahimi and Recht, NIPS, 2007]
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Random features
[Rahimi and Recht, NIPS, 2007]

Datapoints in a fairly low-
dimensional space (a few 

hundred dimensions) 
spanned by random 

Fourier bases

Random features

38

Kernel function

The kernel trick

Inner product used, 
e.g., by SVM.Original data
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Linear discriminant on random features
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7.6 million training cells, 
130 measurements

Mapped into 250-
dimensional random 

feature space

Trained Fisherʼs linear 
discriminant

39



Automatic vs. hand training
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Expected likelihood kernel

42
[Jebara et al., 2004]
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projection of x into random-feature space

〈z(a), z(b)〉 ≈ k(a, b)

z(x)

≈

≈
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• 11 enzymes
• Component of chromatin-regulating complexes
• Also target many non-histone proteins
• Broad relevance to cell signaling and cell state
• Induce differentiation and inhibit proliferation in 

cancer models
• Inhibitors used clinically for cutaneous T-cell 

lymphoma, others in trials for other cancers

Histone deacetylases
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Screening question: find specific HDAC inhibitors
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Inhibition potency data from biochemical assays
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KXT =

Samples

Samples
FeaturesCl

as
se

s

Cl
as

se
s

=

T = K X –1

Fe
at

ur
es

Schematic
48
48



Testing
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Convert scores to soft labels by logistic transform
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HDAC1 HDAC2

HDAC3

9-simplex with 
the 9 HDACs 
and DMSO at 
the vertices
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Proportions of cells for each topic
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Correlations between classes match HDAC phylogeny

{
{

Class IIa
HDACs

Class I
HDACs

Class IIb
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Summary
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Thank you!
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