
Alexandra Moraru

Introduction

Outline

- Semantic technologies and Semantic Web
- Semantic Sensor Web
- Representation Languages
- Ontologies for SSW
- Examples
- Conclusion

Semantics and Syntax

- Semantics the study of meaning
 - relation between signifiers, such as words, phrases, signs and symbols, and what they stand for
- Syntax the study of the principles and rules for constructing sentences in natural languages.
 - rules governing the behavior of mathematical systems, such as logic, artificial formal languages, and computer programming languages.

(Wikipedia)

Semantics and Syntax

Syntax

- Study of grammar
- All about the structure
- How to say something

Semantics

- Study of meaning
- The meaning of what I say
- Different syntaxes may have the same semantic VENIA
 - x = x + 1
 - x + = 1
 - X++

I love Slovenia

Semantics and Syntax

Syntax and semantics are all about communication

- Network protocols in networks
- Languages (English, Slovenian) for humans
- GUIs

Copyright © Randy Glasbergen. www.glasbergen.com

Semantic Technologies

- Semantic Technologies are meaning centered
- Include software standards and methodologies that are aimed at providing more explicit meaning for data
- Refers to encoding meanings separately from data and content files, and separately from application code.
 - Metadata providing context for data
 - Enables machines to understand and reason

Semantic Web

 A new form of Web content that is meaningful to computers

> *Tim Berners Lee et al., The Semantic Web, Scientific American Magazine, May 2001 Issue*

Semantic Web

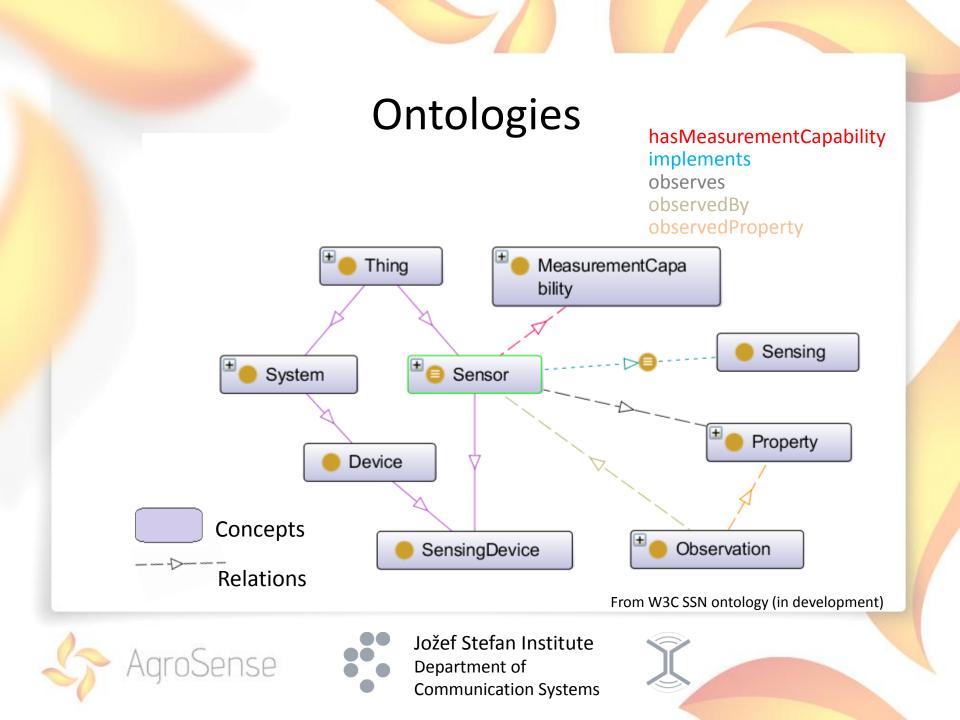
- Make current web more machine accessible
 currently all the intelligence is on the user side
- Motivating use-cases
 - Search, personalization, semantic linking, data integration
- How is this done:
 - Making data and meta-data available on the Web in machine-understandable form (formalized languages)
 - Structure the data and meta-data in **ontologies**

Ontologies

Ontology – "a formal, explicit specification of a shared conceptualization" (T. Gruber)

Components:

- Set of concepts
- Set of relationships
- Set of instances


Based on the level of generality:

- Domain ontologies
- Upper ontologies

Representation Languages

- Ontology Languages are used to encode the domain knowledge and the rules
- Requirements:
 - Intuitive syntax
 - Formally specified semantics
 - Expressivity power
- Description Logic (DL)
 - Can provide semantics and powerful reasoning

Inference

• **DL** models:

- Concepts
- Roles
- Individuals
- Relationships through axioms.

Inference of new relationships

• **Reasoning engine**: "deduce implicit knowledge from the explicit represented knowledge"

Outline

Semantic technologies and Semantic Web

Semantic Sensor Web

Representation Languages

- Ontologies for SSW
- Examples
- Conclusion

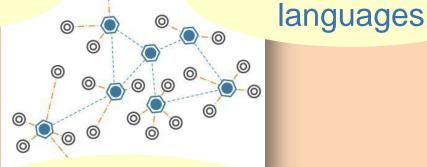
Sensor Web

- Sensor Network interconnects sensor devices in a computer accessible network
- Sensor Web "Web accessible sensor networks and archived sensor data that can be discovered and accessed using standard protocols and application program interfaces" (OGC)

- "A semantically rich sensor network would provide spatial, temporal, and thematic information essential for discovering and analyzing sensor data"
- This is accomplished with references to ontology concepts that provide more expressive concept descriptions

Amit Sheth et al., Semantic Sensor Web, Internet Computing, IEEE In Internet Computing, IEEE, Vol. 12

- Use declarative description of sensors, networks and domain concepts (ontologies) for:
 - Searching and Querying
 - Classification of sensor (functionality, measurement method)
 - Composition of sensors
 - Inference (reasoning)
 - Network management



Ontologies

Reasoning engines

Jožef Stefan Institute Department of Communication Systems

Representation

Outline

Semantic technologies and Semantic Web Semantic Sensor Web

- Representation Languages
- Ontologies for SSW
- Examples
- Conclusion

Representation Languages

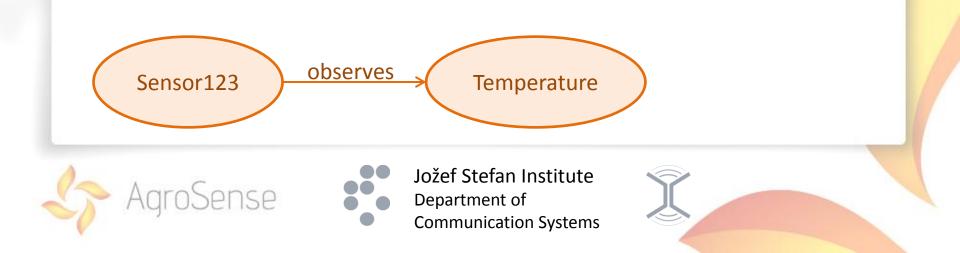
- Used for representing knowledge about sensor
- Structural
 - XML
 - SensorML
- Semantic
 - RDF and RDF-Schema (RDF-S)
 - OWL

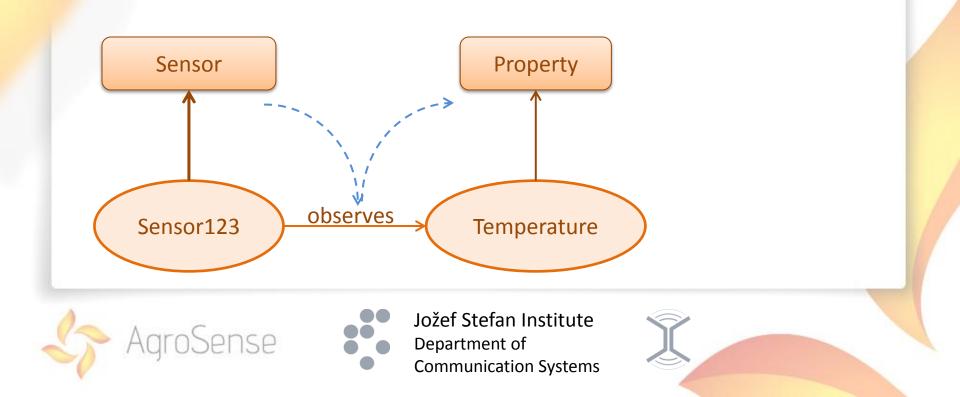
SensorML

- General models and XML encoding
 - describing sensors systems and the processes

Main Elements

- Component
- System
- Process Chain
- Process Model
- For interoperability -> complement with semantic specification




RDF

- Resource Description Framework
- Graph based data model
- Subject-predicate-object triple
 - Predicate correspond to an edge in the graph
 - All labels are actually web-addresses (URIs)

RDF-Schema

- Defines specific **domain vocabularies**
- Supports definition of classes and properties
- Defines the semantics of concepts used in a RDF data model

Representation Languages OWL1 and OWL2 (1)

- The Web Ontology Language
 - Vocabulary and formal semantics for better machine interoperability
- OWL1 three sublanguages:
 - OWL Lite least expressive
 - » Constraints: cardinality(0,1), domain restriction, inequality, inverse, transitivity, symmetry
 - **OWL DL** as expressive as possible (maintaining reasoning capabilities)
 - » Full cardinality, negation, disjunction, enumeration
 - **OWL Full** maximum expressivity
 - » A class can be both collection and individual

Representation Languages OWL1 and OWL2 (2)

- OWL2 new features:
 - Property chains (rules)
 - Additional properties, extended annotation, etc
- OWL2 three sublanguages:
 - OWL2 EL (Existential Quantification)
 - » Large number of classes and properties
 - OWL2 QL (Query Language)
 - » Large large number of instances
 - OWL2 RL (Rule Language)
 - » Very large ontologies
 - » Can be used by rule-reasoners

Representation Languages

			OWL2 RL	OWL2 QL		OWLZ EL		
OWL2		Pr asymmetric, r	Large no of classes and properties	Large I Individ	no. of	Very large ontologies		
OWL	1 Full	Image: Loses tractabilityA class can be both collection and individual						
	DL		sivity (while maintainir actability)	ng			i v i t y	
	Lite	Classification simple co	· · · · · · · · · · · · · · · · · · ·				r e s s	
RDFS		Defines vocabulary Organize Vocabulary in typed hierarchies			Sense		Ехр	
RDF		Data Interchange Data Model – graph, building block - triple			Spee dom sens	ain:		
XML		Syntax						
		•	ložef Stefan Institute					

Jožef Stefan Institute

Department of

Communication Systems

Outline

Semantic technologies and Semantic Web Semantic Sensor Web Representation Languages

- Ontologies for SSW
- Examples
- Conclusion

Ontologies

- Major role in combining semantics with sensor networks
- Existing sensor networks ontologies
 - CSIRO
 - OntoSensor
 - CESN
- In development
 - W3C SSN Incubator Group

Ontologies – CSIRO (1)

- Provides a language for describing sensors
 - **technical aspects** (calibration, temporal resolution-sampling frequency, accuracy, what it measures)
 - information about access to the sensor for control and configuration
 - location, meaning of data

Ontologies – CSIRO (2)

• Structured into four clusters (groups) of concepts:

- sensor description Sensor
- domain of sensing Feature
- physical component and location description SensorGrounding
- operational model *OperationModel*
 - » Allows describing abstract sensor as composition of concrete sensors

Ontologies – OntoSensor

- Purpose: build a general knowledge base for sensors
 - map hierarchical concepts form SensorML to OWL
 - Only partial success
- Based on sensor ML
 - Includes concepts from SUMO and ISO 19155

(schema for geographic information and services)

Ontologies – CESN

- Uses Sensor ML terminology
- Utilized on an application capable to reason about coastal storm
 - Scalable system
 - Not general enough ontology

Ontologies – W3C SSN

W3C SSN Incubator Group

- SSN Ontology in development
- Extending existing sensor network representation language with semantic annotation

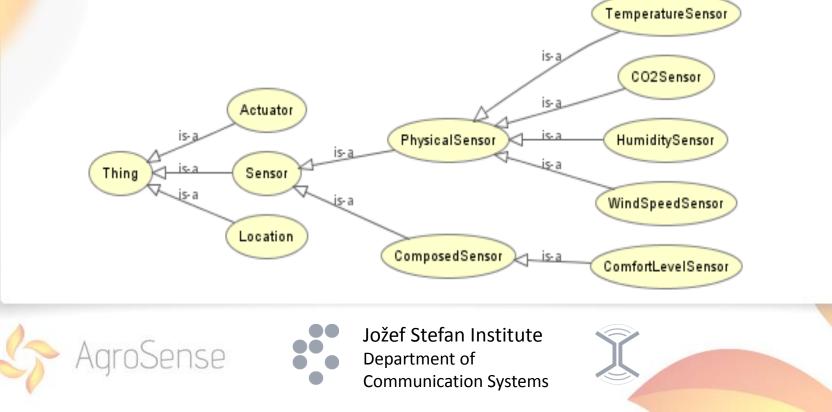
Ontologies - Summary

- Common set of concepts
 - Taxonomy of different types of sensors
 - Physical properties
 - Data acquisition
 - Sensed domain
 - May vary depending on the application

Outline

Semantic technologies and Semantic Web Semantic Sensor Web Representation Languages

- Ontologies for SSW
- Examples
- Conclusion



Illustrative Example Calculating Level Of Comfort

 Sensors measuring temperature, humidity and wind speed are located in the same place, which is the interest for a user (e.g. a park, other type of outdoor leisure space, etc.).

Illustrative Example Calculating Level Of Comfort

• Rule:

TemperatureSensor(?S1), HumiditySensor(?S2), WindSpeedSensor(?S3), hasLocation(?S1, ?L), hasLocation(?S2, ?L), hasLocation(?S3, ?L), -> ComfortLevelSensor(?newVirtualSensor), hasLocation (?newVirtualSensor, ?L)

- Query:
- What are the sensors measuring comfort level at a specific location?
 - without having to have the knowledge about all the other sensors needed for computing comfort level

Cyc and Pachube

- What is Cyc?
 - Collection of concepts, facts, rules of thumbs that represent common sense knowledge (KB)
 - Inference engine
 - Interfaces
- What is Pachube?
 - Web service that enables storing, sharing & discovering of real-time sensor,
 - Like YouTube, but instead of sharing *videos*, Pachube enables sharing *real time environmental data from sensors* that are connected to the internet.
- Idea
- Collect sensor description and data
- Use some of the existing rules and introduce new ones to perform reasoning using Cyc
- Possible Applications
 - Complex searching, with multiple constraints
 - » Location, sensed features, tags

Cyc and Pachube

<title>Ship - LAGO MAGADI IMO:8825808</title> <feed>http://www.pachube.com/api/feeds/3826.xml</feed> <status>live</status> <location domain="physical" exposure="outd disposition="mobi <lat>45.61304</lat> <lon>13.78468</lon> </location> <data in="0 g>latitude< <value minValue="0.0" maxValue="45.67596">45.61304</value> </data> <data id="1"> <tag>longitude</tag> <value minValue="0.0" maxValue="13.80876">13.78468</value> </data> <data id="2" <tag>average speed<, $a\alpha$.8" maxValue="7.3">6.7</value> <valu <unit>knots</unit> </data> Individual : Sensor123 **GAF Arg:1**

Mt: <u>BaseKB</u>

<u>isa</u>: [●]<u>Sensor</u> <u>latitude</u>: [●]<u>(Degree-UnitOfAngularMeasure</u> 45.61304) <u>longitude</u>: [●]<u>(Degree-UnitOfAngularMeasure</u> 13.78) <u>sensorMeasures</u>: [●]<u>Speed</u>

Conclusion

- SSW = Semantics + Sensor Web
 - Their success depends on how fast the semantics will adapts to SN requirements
- Semantic technologies reviewed
 - SSW Ontologies
 - » CSIRO, OntoSensor, W3C SSN
 - Representation Languages
 - » SensorML, RDF, RDFS, OWL

Some References

- Semantic Web
 - G. Antoniu and F. van Harmelen: Semantic Web Primer, 2nd edition in 2008
- Semantic Sensor Web
 - Amit Sheth et al., Semantic Sensor Web, *Internet Computing, IEEE* In Internet Computing, IEEE, Vol. 12, No.
 4. (2008), pp. 78-83
 - Semantic Sensor Network Incubator Group <u>http://www.w3.org/2005/Incubator/ssn/charter</u>

