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Introduction

“The main purpose of middleware for sensor networks is to
support the development, maintenance, deployment, and

execution of sensing-based applications”

Middleware

— Software infrastructure that glues together
* Network hardware
e Applications
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Embedded Operating Systems (EOSs)

e EOS - OS running on constrained devices, with limited
resources and capabilities

e Kernel

— Functions
e Resource management: processor, memory, |/O devices
e Allow other programs to run and use these resources
e Synchronization
e Communication between processes
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Embedded Operating Systems

Traditional OS Desired features for EOS

e Large memory requirements  Small memory footprint

e Multithreaded architecture e Efficient computation

e |/O model  Power aware communication

e Kernel and user separation protocols

e No energy constraints  Easyinterface to expose data

« Ample available resources e Support diverse application design

e Simple way to program, update and
debug network applications
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Embedded Operating Systems

e Support for programming wireless sensor nodes

— Over-the-air reconfiguration
* Maintenance

— Code update mechanisms

* Reprogramming

 Virtual machines
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Embedded Operating Systems

e Modular vs. monolithicimages

— Monolithic (TinyOS, FreeRTOS, eCOS, uC/OS-II, Nut/OS)
* One system image: system kernel + other components compiled together
e Efficient execution environment (optimization at compilation)
e High energy costs for updating

— Modular (Contiki, SOS)
e Static image (kernel) + loadable component images
e Lower execution efficiency (no global optimization at compilation time)
e Updates are less expensive (smaller size) - energy and time
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Embedded Operating Systems
e Scheduling

— Event driven model (Contiki, TinyOS, SOS)

e Handlers that run to completion

* No locking - only one event running at a time
* One stack — reused for every event handler

e Requires less memory

— Thread driven model (FreeRTOS, eCOS, Nut/0S, eCOS)

e Each thread has its own stack

e Thread stacks allocated at creation time (Unused stack space wastes
memory)

* Locking mechanisms - to prevent modifying shared resources
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Embedded Operating Systems

Name Scheduling Mem. Mgmt. Kernel Image Footprint
Contiki Event/Thread Single Yes Modular Variable
Hybrid
TinyOS Event Single stack No Monolithic Variable
eCOS Thread, preempt Multiple stacks Yes Monolithic Variable
uC/0s-Il Thread, preempt Multiple stacks Yes Monolithic Variable
FreeRTOS Thread, preempt Multiple stacks Yes Monolithic Variable
Nut/0S Thread, preempt Multiple stack Yes Monolithic Variable
SOS Event Single Yes Modular Variable
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Protocol Stacks

e Communication standards:

— |EEE802.15.4, ZigBee, ISA100.11a, WirelessHART, 6LoWPAN, Bluetooth,
IEEE802.11

e Design models
— Adjacent layers
— Cross layer design
— \Vertical calibration

 Implementation
— In Software (within the OS)

— On microcontroller
— Hybrid
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Protocol Stacks
e Challenges

— Small size of the physical nodes
— Limited available memory

e Code optimizations

e Reduced functionalities
— Interoperability

 Modularity
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Protocol Stacks
e Testing

— Check actual functionality compared to the expected one

— Implementation size (memory usage + code size)
* Memory usage
— Max number of processes
— Max size of event queue
— Size of thread stacks (for multi-threaded operation)
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Communication Standard

IEEE 802.15.4

ZigBee

6LoWPAN

WirelessHART

ISA100.11a

Bluetooth

IEEE 802.11

Protocol Stacks

Protocol Stack Implementation

“Implementation of IEEE 802.15.4 protocol stack for Linux”
Z-Stack, Open-ZB, FreakZ, Microchip Stack

NanoStack2.0, Mantus, uIPv6, BLIP (Berkeley Low-power IP)

“WirelessHART- Implementation and Evaluation on Wireless Sensors”,
“WirelessHART: Applying Wireless Technology in Real-Time Industrial Process

III

Contro

NISA100.11a

TinyBT, Axis OpenBT, Bluez, Affix
smxWiFi
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Protocol Stacks

Name Memory

NanoStack 2.0 32-64 kB ROM, 4-8kB RAM
Matus 4KB RAM

uIPv6 11KB ROM, 1.8KB RAM
BLIP 4KB RAM

Open-ZB 3kB RAM

Microchip Stack 22.3kB ROM
“Implementation of the IEEE802.15.4 protocol stack for Linux” 32KB RAM

smxWiFi 25K - 49K ROM
“WirelessHART-Implementation and Evaluation on Wireless Sensors” 11KB ROM, 10KB RAM

“WirelessHART: Applying Wireless Technology in Real-Time Industrial Process Control”  60kB ROM, 4kB RAM
TinyBT 3KB ROM, 1KB RAM
Axis OpenBT 190KB ROM
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Protocol Stacks

Operating System Protocol Stack Implementation

TinyOS TinyBT, Open-ZB, BLIP, MATUS

Contiki uIPv6, FreakZ, “WirelessHART: Implementation and Evaluation
of Wireless Sensors”

RTOS NanoStack (FREERTOS), smxWiFi stack (SMXRTOS)

Linux BlueZ, Axis OpenBT, Affix, “Implementation of the IEEE
802.15.4”, NISA100.11a

Windows NISA100.11a, Z-Stack, Microchip Stack

 Programming languages
— C
— hnesC
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Virtual Machines

e Reason
— A large number of platforms and OSs for WSNs

e Abstracting the device hardware from an application
— Applications run on heterogeneous platforms
— Underlying physical is kept transparent to the user
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Virtual Machines

e Types

— Middleware level VM
e Between OS and application
e Can add capabilities to the underlying OS (e.g. multithreading)
* Mate, Darjeeling, VM*, SwissQM, DVM

— System level VM

* No OS support

e Some OS specific functions (resource management, concurrency, thread
scheduling, interruption handling)

* More available memory

e Squawk, .NET Micro
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Virtual Machines

e Features

— Portability
— Platform independence
— Programming support
e Concurrency, modular and distributed software

e Bug fixing , reprogramming, adding new tags and functionalities
to a node
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Virtual Machines

e Trade-off between the resources needed and the services it
provides

e Reduce the distribution energy costs for software updates
— VM code smaller than native machine code
— Simpler reprogramming process

e Additional overhead

— Increased time and memory requirements for execution

— Increased energy spent in interpreting the code
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Virtual Machines

Name oS ASVM  Execution Platform Memory Multi- Supported programming
Model requirements threading language
Mate TinyOS No Stack-based Rene2, Mica 600B RAM Yes TinyScript
7.5KB ROM
.NET Micro With (TinyOS)/ No Stack-based Imote2 512MB ROM Yes CH
Without OS 300kB RAM
Darjeeling  TinyOS, Contiki,No Stack-based Tnode, Tmote2K RAM Yes Java subset
FOS Sky,Fleck3/Fleck3B
Squawk With(Solaris,  Yes Stack-based SunSpots Core:80KB ROM  Yes Java
Windows, Java Card 3.0 Libs:270kB ROM
MACOSX,Linux)
/Without OS
VM* Os* yes Stack-based Mica 6kB ROM No Java
200kB RAM
SwissQM TinyOS Yes Stack-based Mica2,TmoteSky 33kB ROM Yes Java subset
3kB RAM
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Conclusions

e Middleware
— State of the art

e Embedded Operating Systems
e Protocol Stacks

e Virtual machines
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