Overview of Middleware for Embedded Devices

Maria Porcius

Outline

- [″] Introduction
- Embedded Operating Systems
- Protocol Stacks
- "Virtual Machines
- " Conclusions

Introduction

"The main purpose of middleware for sensor networks is to support the development, maintenance, deployment, and execution of sensing-based applications"

Middleware

- . Software infrastructure that glues together
 - Network hardware
 - " Applications

Outline

- *Introduction*
- Embedded Operating Systems
- " Protocol Stacks
- " Virtual Machines
- " Conclusions

Embedded Operating Systems (EOSs)

EOS - OS running on constrained devices, with limited resources and capabilities

Kernel

- . Functions
 - ["] Resource management: processor, memory, I/O devices
 - ["] Allow other programs to run and use these resources
 - ["] Synchronization
 - Communication between processes

Traditional OS

- ²² Large memory requirements
- Multithreaded architecture
- ″ I/O model
- Kernel and user separation
- No energy constraints
- Ample available resources

Desired features for EOS

- " Efficient computation
- Power aware communication protocols
- Easy interface to expose data
- ["] Support diverse application design
- Simple way to program, update and debug network applications

- Support for programming wireless sensor nodes
 - . Over-the-air reconfiguration
 - ″ Maintenance
 - . Code update mechanisms
 - Reprogramming
- " Virtual machines

Modular vs. monolithic images

- . Monolithic (TinyOS, FreeRTOS, eCOS, uC/OS-II, Nut/OS)
 - ["] One system image: system kernel + other components compiled together
 - ²⁷ Efficient execution environment (optimization at compilation)
 - ["]High energy costs for updating
 - Modular (Contiki, SOS)
 - ["] Static image (kernel) + loadable component images
 - ["] Lower execution efficiency (no global optimization at compilation time)
 - ²⁷ Updates are less expensive (smaller size) energy and time

Scheduling

- . Event driven model (Contiki, TinyOS, SOS)
 - ["] Handlers that run to completion
 - ["] No locking only one event running at a time
 - [°] One stack reused for every event handler
 - " Requires less memory
- . Thread driven model (FreeRTOS, eCOS, Nut/OS, eCOS)
 - ²⁷ Each thread has its own stack
 - Thread stacks allocated at creation time (Unused stack space wastes memory)
 - ["] Locking mechanisms to prevent modifying shared resources

Name	Scheduling	Mem. Mgmt.	Kernel	Image	Footprint
Contiki	Event/Thread Hybrid	Single	Yes	Modular	Variable
TinyOS	Event	Single stack	No Monolithic		Variable
eCOS	Thread, preempt	Multiple stacks	Yes	Monolithic	Variable
uC/OS-II	Thread, preempt	Multiple stacks	Yes	Monolithic	Variable
FreeRTOS	Thread, preempt	Multiple stacks	Yes	Monolithic	Variable
Nut/OS	Thread, preempt	Multiple stack	Yes	Monolithic	Variable
SOS	Event	Single	Yes	Modular	Variable

Jožef Stefan Institute Department of

Communication Systems

Outline

- *Introduction*
- " Embedded Operating Systems
- Protocol Stacks
- " Virtual Machines
- " Conclusions

- **Communication standards:**
 - . IEEE802.15.4, ZigBee, ISA100.11a, WirelessHART, 6LoWPAN, Bluetooth, IEEE802.11
 - Design models
 - . Adjacent layers
 - . Cross layer design
 - . Vertical calibration
- ["] Implementation
 - . In Software (within the OS)
 - . On microcontroller
 - . Hybrid

["] Challenges

- . Small size of the physical nodes
- . Limited available memory
 - ["] Code optimizations
 - ⁷ Reduced functionalities
- . Interoperability
 - " Modularity

Testing

- . Check actual functionality compared to the expected one
- . Implementation size (memory usage + code size)
 - Memory usage
 - . Max number of processes
 - . Max size of event queue
 - . Size of thread stacks (for multi-threaded operation)

Communication Standard	Protocol Stack Implementation			
IEEE 802.15.4	"Implementation of IEEE 802.15.4 protocol stack for Linux"			
ZigBee	Z-Stack, Open-ZB, FreakZ, Microchip Stack			
6LoWPAN	NanoStack2.0, Mantus, µIPv6, BLIP (Berkeley Low-power IP)			
WirelessHART	"WirelessHART- Implementation and Evaluation on Wireless Sensors", "WirelessHART: Applying Wireless Technology in Real-Time Industrial Process Control"			
ISA100.11a	NISA100.11a			
Bluetooth	TinyBT, Axis OpenBT, BlueZ, Affix			
IEEE 802.11	smxWiFi			
AgroSense	Jožef Stefan Institute Department of			

Communication Systems

Name	Memory		
NanoStack 2.0	32-64 kB ROM, 4-8kB RAM		
Matus	4KB RAM		
μΙΡν6	11KB ROM, 1.8KB RAM		
BLIP	4KB RAM		
Open-ZB	3kB RAM		
Microchip Stack	22.3kB ROM		
"Implementation of the IEEE802.15.4 protocol stack for Linux"	32KB RAM		
smxWiFi	25K - 49K ROM		
"WirelessHART-Implementation and Evaluation on Wireless Sensors"	11KB ROM, 10KB RAM		
"WirelessHART: Applying Wireless Technology in Real-Time Industrial Process Control"	60kB ROM, 4kB RAM		
TinyBT	3KB ROM, 1KB RAM		
Axis OpenBT	190KB ROM		
AgroSense Jožef Stefan Institute Department of Communication Systems	Ĩ		

Operating System	Protocol Stack Implementation
TinyOS	TinyBT, Open-ZB, BLIP, MATUS
Contiki	µIPv6, FreakZ, "WirelessHART: Implementation and Evaluation of Wireless Sensors"
RTOS	NanoStack (FREERTOS), smxWiFi stack (SMXRTOS)
Linux	BlueZ, Axis OpenBT, Affix, "Implementation of the IEEE 802.15.4", NISA100.11a
Windows	NISA100.11a, Z-Stack, Microchip Stack

- C
- nesC

Outline

- *Introduction*
- " Embedded Operating Systems
- " Protocol Stacks
- "Virtual Machines
- " Conclusions

- [″] Reason
 - . A large number of platforms and OSs for WSNs

Abstracting the device hardware from an application

- . Applications run on heterogeneous platforms
- . Underlying physical is kept transparent to the user

Types

- . Middleware level VM
 - ⁶ Between OS and application
 - ⁷ Can add capabilities to the underlying OS (e.g. multithreading)
 - ^{*} Mate, Darjeeling, VM*, SwissQM, DVM
- System level VM
 - No OS support
 - Some OS specific functions (resource management, concurrency, thread scheduling, interruption handling)
 - ["] More available memory
 - ["] Squawk, .NET Micro

[″] Features

- . Portability
- . Platform independence
- . Programming support
 - ["] Concurrency, modular and distributed software
 - ["] Bug fixing , reprogramming, adding new tags and functionalities to a node

Trade-off between the resources needed and the services it provides

Reduce the distribution energy costs for software updates

- . VM code smaller than native machine code
- . Simpler reprogramming process
- Additional overhead
 - . Increased time and memory requirements for execution
 - . Increased energy spent in interpreting the code

Name	OS	ASVM	Execution Model	Platform	Memory requirements	Multi- threading	Supported programming language
Mate	TinyOS	No	Stack-based	Rene2, Mica	600B RAM 7.5KB ROM	Yes	TinyScript
.NET Micro	With (TinyOS)/ Without OS	No	Stack-based	Imote2	512MB ROM 300kB RAM	Yes	C#
Darjeeling	TinyOS, Contiki, FOS	No	Stack-based	Tnode, Tmote Sky,Fleck3/Fleck3B	2K RAM	Yes	Java subset
Squawk	With(Solaris, Windows, MACOSX,Linux) /Without OS	Yes	Stack-based	SunSpots Java Card 3.0	Core:80KB ROM Libs:270kB ROM	Yes	Java
VM*	OS*	yes	Stack-based	Mica	6kb ROM 200kb RAM	No	Java
SwissQM	TinyOS	Yes	Stack-based	Mica2,TmoteSky	33kB ROM 3kB RAM	Yes	Java subset

Jožef Stefan Institute

Department of Communication Systems

Conclusions

- *[″]* Middleware
 - . State of the art
 - " Embedded Operating Systems
 - " Protocol Stacks
 - " Virtual machines

Sense

Department of **Communication Systems**