o WA

Overview of Middleware for
Embedded Devices

Maria Porcius

,f,? AgroSense

Outline

Introduction

Embedded Operating Systems
Protocol Stacks

Virtual Machines

Conclusions

Jozef Stefan Institute
Department of
Communication Systems

Introduction

“The main purpose of middleware for sensor networks is to
support the development, maintenance, deployment, and

execution of sensing-based applications”

Middleware

— Software infrastructure that glues together
* Network hardware
e Applications

Jozef Stefan Institute
Department of
Communication Systems

Outline

Introduction

Embedded Operating Systems
Protocol Stacks

Virtual Machines

Conclusions

Jozef Stefan Institute
Department of
Communication Systems

Embedded Operating Systems (EOSs)

e EOS - OS running on constrained devices, with limited
resources and capabilities

e Kernel

— Functions
e Resource management: processor, memory, |/O devices
e Allow other programs to run and use these resources
e Synchronization
e Communication between processes

Jozef Stefan Institute
Department of
Communication Systems

Embedded Operating Systems

Traditional OS Desired features for EOS

e Large memory requirements Small memory footprint

e Multithreaded architecture e Efficient computation

e |/O model Power aware communication

e Kernel and user separation protocols

e No energy constraints Easyinterface to expose data

« Ample available resources e Support diverse application design

e Simple way to program, update and
debug network applications

Jozef Stefan Institute
Department of
Communication Systems

Embedded Operating Systems

e Support for programming wireless sensor nodes

— Over-the-air reconfiguration
* Maintenance

— Code update mechanisms

* Reprogramming

 Virtual machines

Jozef Stefan Institute
Department of
Communication Systems

Embedded Operating Systems

e Modular vs. monolithicimages

— Monolithic (TinyOS, FreeRTOS, eCOS, uC/OS-II, Nut/OS)
* One system image: system kernel + other components compiled together
e Efficient execution environment (optimization at compilation)
e High energy costs for updating

— Modular (Contiki, SOS)
e Static image (kernel) + loadable component images
e Lower execution efficiency (no global optimization at compilation time)
e Updates are less expensive (smaller size) - energy and time

Jozef Stefan Institute
Department of
Communication Systems

Embedded Operating Systems
e Scheduling

— Event driven model (Contiki, TinyOS, SOS)

e Handlers that run to completion

* No locking - only one event running at a time
* One stack — reused for every event handler

e Requires less memory

— Thread driven model (FreeRTOS, eCOS, Nut/0S, eCOS)

e Each thread has its own stack

e Thread stacks allocated at creation time (Unused stack space wastes
memory)

* Locking mechanisms - to prevent modifying shared resources

Jozef Stefan Institute
Department of
Communication Systems

Embedded Operating Systems

Name Scheduling Mem. Mgmt. Kernel Image Footprint
Contiki Event/Thread Single Yes Modular Variable
Hybrid
TinyOS Event Single stack No Monolithic Variable
eCOS Thread, preempt Multiple stacks Yes Monolithic Variable
uC/0s-Il Thread, preempt Multiple stacks Yes Monolithic Variable
FreeRTOS Thread, preempt Multiple stacks Yes Monolithic Variable
Nut/0S Thread, preempt Multiple stack Yes Monolithic Variable
SOS Event Single Yes Modular Variable

Jozef Stefan Institute
Department of
Communication Systems

Outline

Introduction

Embedded Operating Systems
Protocol Stacks

Virtual Machines

Conclusions

.:’ Jozef Stefan Institute o
AJrooeNSe ® ® Department of)(
| ® Communication Systems =t

Protocol Stacks

e Communication standards:

— |EEE802.15.4, ZigBee, ISA100.11a, WirelessHART, 6LoWPAN, Bluetooth,
IEEE802.11

e Design models
— Adjacent layers
— Cross layer design
— \Vertical calibration

 Implementation
— In Software (within the OS)

— On microcontroller
— Hybrid

Jozef Stefan Institute
Department of
Communication Systems

Protocol Stacks
e Challenges

— Small size of the physical nodes
— Limited available memory

e Code optimizations

e Reduced functionalities
— Interoperability

 Modularity

Jozef Stefan Institute
Department of
Communication Systems

Protocol Stacks
e Testing

— Check actual functionality compared to the expected one

— Implementation size (memory usage + code size)
* Memory usage
— Max number of processes
— Max size of event queue
— Size of thread stacks (for multi-threaded operation)

Jozef Stefan Institute
Department of
Communication Systems

Communication Standard

IEEE 802.15.4

ZigBee

6LoWPAN

WirelessHART

ISA100.11a

Bluetooth

IEEE 802.11

Protocol Stacks

Protocol Stack Implementation

“Implementation of IEEE 802.15.4 protocol stack for Linux”
Z-Stack, Open-ZB, FreakZ, Microchip Stack

NanoStack2.0, Mantus, uIPv6, BLIP (Berkeley Low-power IP)

“WirelessHART- Implementation and Evaluation on Wireless Sensors”,
“WirelessHART: Applying Wireless Technology in Real-Time Industrial Process

III

Contro

NISA100.11a

TinyBT, Axis OpenBT, Bluez, Affix
smxWiFi
Jozef Stefan Institute

Department of
Communication Systems

Protocol Stacks

Name Memory

NanoStack 2.0 32-64 kB ROM, 4-8kB RAM
Matus 4KB RAM

uIPv6 11KB ROM, 1.8KB RAM
BLIP 4KB RAM

Open-ZB 3kB RAM

Microchip Stack 22.3kB ROM
“Implementation of the IEEE802.15.4 protocol stack for Linux” 32KB RAM

smxWiFi 25K - 49K ROM
“WirelessHART-Implementation and Evaluation on Wireless Sensors” 11KB ROM, 10KB RAM

“WirelessHART: Applying Wireless Technology in Real-Time Industrial Process Control” 60kB ROM, 4kB RAM
TinyBT 3KB ROM, 1KB RAM
Axis OpenBT 190KB ROM

Jozef Stefan Institute

Department of
Communication Systems

Protocol Stacks

Operating System Protocol Stack Implementation

TinyOS TinyBT, Open-ZB, BLIP, MATUS

Contiki uIPv6, FreakZ, “WirelessHART: Implementation and Evaluation
of Wireless Sensors”

RTOS NanoStack (FREERTOS), smxWiFi stack (SMXRTOS)

Linux BlueZ, Axis OpenBT, Affix, “Implementation of the IEEE
802.15.4”, NISA100.11a

Windows NISA100.11a, Z-Stack, Microchip Stack

 Programming languages
— C
— hnesC
Jozef Stefan Institute

Department of
Communication Systems

Outline

Introduction

Embedded Operating Systems
Protocol Stacks

Virtual Machines

Conclusions

.:’ Jozef Stefan Institute o
AJIroOoense © ® Department of)(
| ® Communication Systems =t

Virtual Machines

e Reason
— A large number of platforms and OSs for WSNs

e Abstracting the device hardware from an application
— Applications run on heterogeneous platforms
— Underlying physical is kept transparent to the user

Jozef Stefan Institute
Department of
Communication Systems

Virtual Machines

e Types

— Middleware level VM
e Between OS and application
e Can add capabilities to the underlying OS (e.g. multithreading)
* Mate, Darjeeling, VM*, SwissQM, DVM

— System level VM

* No OS support

e Some OS specific functions (resource management, concurrency, thread
scheduling, interruption handling)

* More available memory

e Squawk, .NET Micro

Jozef Stefan Institute
Department of
Communication Systems

Virtual Machines

e Features

— Portability
— Platform independence
— Programming support
e Concurrency, modular and distributed software

e Bug fixing , reprogramming, adding new tags and functionalities
to a node

Jozef Stefan Institute
Department of
Communication Systems

Virtual Machines

e Trade-off between the resources needed and the services it
provides

e Reduce the distribution energy costs for software updates
— VM code smaller than native machine code
— Simpler reprogramming process

e Additional overhead

— Increased time and memory requirements for execution

— Increased energy spent in interpreting the code

Jozef Stefan Institute
Department of
Communication Systems

Virtual Machines

Name oS ASVM Execution Platform Memory Multi- Supported programming
Model requirements threading language
Mate TinyOS No Stack-based Rene2, Mica 600B RAM Yes TinyScript
7.5KB ROM
.NET Micro With (TinyOS)/ No Stack-based Imote2 512MB ROM Yes CH
Without OS 300kB RAM
Darjeeling TinyOS, Contiki,No Stack-based Tnode, Tmote2K RAM Yes Java subset
FOS Sky,Fleck3/Fleck3B
Squawk With(Solaris, Yes Stack-based SunSpots Core:80KB ROM Yes Java
Windows, Java Card 3.0 Libs:270kB ROM
MACOSX,Linux)
/Without OS
VM* Os* yes Stack-based Mica 6kB ROM No Java
200kB RAM
SwissQM TinyOS Yes Stack-based Mica2,TmoteSky 33kB ROM Yes Java subset
3kB RAM

Jozef Stefan Institute
Department of
Communication Systems

Conclusions

e Middleware
— State of the art

e Embedded Operating Systems
e Protocol Stacks

e Virtual machines

Jozef Stefan Institute
Department of
Communication Systems

|
EEESAN

e

maria.porcius@ijs.si

Jozef Stefan Institute
Department of
Communication Systems

