
Jožef Stefan Institute
Department of
Communication Systems

Overview of Middleware for
Embedded Devices

Maria Porcius

Jožef Stefan Institute
Department of
Communication Systems

Outline

• Introduction

• Embedded Operating Systems

• Protocol Stacks

• Virtual Machines

• Conclusions

Jožef Stefan Institute
Department of
Communication Systems

Introduction

• “The main purpose of middleware for sensor networks is to
support the development, maintenance, deployment, and
execution of sensing-based applications”

• Middleware
– Software infrastructure that glues together

• Network hardware
• Applications

Jožef Stefan Institute
Department of
Communication Systems

Outline

• Introduction

• Embedded Operating Systems

• Protocol Stacks

• Virtual Machines

• Conclusions

Jožef Stefan Institute
Department of
Communication Systems

Embedded Operating Systems (EOSs)

• EOS - OS running on constrained devices, with limited
resources and capabilities

• Kernel
– Functions

• Resource management: processor, memory, I/O devices
• Allow other programs to run and use these resources
• Synchronization
• Communication between processes

Jožef Stefan Institute
Department of
Communication Systems

Embedded Operating Systems

Traditional OS

• Large memory requirements
• Multithreaded architecture
• I/O model
• Kernel and user separation
• No energy constraints
• Ample available resources

Desired features for EOS

• Small memory footprint
• Efficient computation
• Power aware communication

protocols
• Easy interface to expose data
• Support diverse application design
• Simple way to program, update and

debug network applications

Jožef Stefan Institute
Department of
Communication Systems

Embedded Operating Systems

• Support for programming wireless sensor nodes

– Over-the-air reconfiguration
• Maintenance

– Code update mechanisms
• Reprogramming

• Virtual machines

Jožef Stefan Institute
Department of
Communication Systems

Embedded Operating Systems

• Modular vs. monolithic images

– Monolithic (TinyOS, FreeRTOS, eCOS, uC/OS-II, Nut/OS)
• One system image: system kernel + other components compiled together
• Efficient execution environment (optimization at compilation)
• High energy costs for updating

– Modular (Contiki, SOS)
• Static image (kernel) + loadable component images
• Lower execution efficiency (no global optimization at compilation time)
• Updates are less expensive (smaller size) - energy and time

Jožef Stefan Institute
Department of
Communication Systems

Embedded Operating Systems

• Scheduling

– Event driven model (Contiki, TinyOS, SOS)
• Handlers that run to completion
• No locking - only one event running at a time
• One stack – reused for every event handler
• Requires less memory

– Thread driven model (FreeRTOS, eCOS, Nut/OS, eCOS)
• Each thread has its own stack
• Thread stacks allocated at creation time (Unused stack space wastes

memory)
• Locking mechanisms - to prevent modifying shared resources

Jožef Stefan Institute
Department of
Communication Systems

Embedded Operating Systems

Name Scheduling Mem. Mgmt. Kernel Image Footprint

Contiki Event/Thread
Hybrid

Single Yes Modular Variable

TinyOS Event Single stack No Monolithic Variable

eCOS Thread, preempt Multiple stacks Yes Monolithic Variable

uC/OS-II Thread, preempt Multiple stacks Yes Monolithic Variable

FreeRTOS Thread, preempt Multiple stacks Yes Monolithic Variable

Nut/OS Thread, preempt Multiple stack Yes Monolithic Variable

SOS Event Single Yes Modular Variable

Jožef Stefan Institute
Department of
Communication Systems

Outline

• Introduction

• Embedded Operating Systems

• Protocol Stacks

• Virtual Machines

• Conclusions

Jožef Stefan Institute
Department of
Communication Systems

Protocol Stacks
• Communication standards:

– IEEE802.15.4, ZigBee, ISA100.11a, WirelessHART, 6LoWPAN, Bluetooth,
IEEE802.11

• Design models
– Adjacent layers
– Cross layer design
– Vertical calibration

• Implementation
– In Software (within the OS)
– On microcontroller
– Hybrid

Jožef Stefan Institute
Department of
Communication Systems

Protocol Stacks

• Challenges

– Small size of the physical nodes
– Limited available memory

• Code optimizations
• Reduced functionalities

– Interoperability
• Modularity

Jožef Stefan Institute
Department of
Communication Systems

Protocol Stacks

• Testing

– Check actual functionality compared to the expected one
– Implementation size (memory usage + code size)

• Memory usage
– Max number of processes
– Max size of event queue
– Size of thread stacks (for multi-threaded operation)

Jožef Stefan Institute
Department of
Communication Systems

Protocol Stacks

Communication Standard Protocol Stack Implementation

IEEE 802.15.4 “Implementation of IEEE 802.15.4 protocol stack for Linux”

ZigBee Z-Stack, Open-ZB, FreakZ, Microchip Stack

6LoWPAN NanoStack2.0, Mantus, μIPv6, BLIP (Berkeley Low-power IP)

WirelessHART “WirelessHART- Implementation and Evaluation on Wireless Sensors”,
“WirelessHART: Applying Wireless Technology in Real-Time Industrial Process
Control”

ISA100.11a NISA100.11a

Bluetooth TinyBT, Axis OpenBT, BlueZ, Affix

IEEE 802.11 smxWiFi

Jožef Stefan Institute
Department of
Communication Systems

Protocol Stacks
Name Memory

NanoStack 2.0 32-64 kB ROM, 4-8kB RAM

Matus 4KB RAM

μIPv6 11KB ROM, 1.8KB RAM

BLIP 4KB RAM

Open-ZB 3kB RAM

Microchip Stack 22.3kB ROM

“Implementation of the IEEE802.15.4 protocol stack for Linux” 32KB RAM

smxWiFi 25K - 49K ROM

“WirelessHART-Implementation and Evaluation on Wireless Sensors” 11KB ROM, 10KB RAM

“WirelessHART: Applying Wireless Technology in Real-Time Industrial Process Control” 60kB ROM, 4kB RAM

TinyBT 3KB ROM, 1KB RAM

Axis OpenBT 190KB ROM

Jožef Stefan Institute
Department of
Communication Systems

Protocol Stacks

• Programming languages
– C
– nesC

Operating System Protocol Stack Implementation

TinyOS TinyBT, Open-ZB, BLIP, MATUS

Contiki μIPv6, FreakZ, “WirelessHART: Implementation and Evaluation
of Wireless Sensors”

RTOS NanoStack (FREERTOS), smxWiFi stack (SMXRTOS)

Linux BlueZ, Axis OpenBT, Affix, “Implementation of the IEEE
802.15.4”, NISA100.11a

Windows NISA100.11a, Z-Stack, Microchip Stack

Jožef Stefan Institute
Department of
Communication Systems

Outline

• Introduction

• Embedded Operating Systems

• Protocol Stacks

• Virtual Machines

• Conclusions

Jožef Stefan Institute
Department of
Communication Systems

Virtual Machines

• Reason
– A large number of platforms and OSs for WSNs

• Abstracting the device hardware from an application
– Applications run on heterogeneous platforms
– Underlying physical is kept transparent to the user

Jožef Stefan Institute
Department of
Communication Systems

Virtual Machines
• Types

– Middleware level VM
• Between OS and application
• Can add capabilities to the underlying OS (e.g. multithreading)
• Mate, Darjeeling, VM*, SwissQM, DVM

– System level VM
• No OS support
• Some OS specific functions (resource management, concurrency, thread

scheduling, interruption handling)
• More available memory
• Squawk, .NET Micro

Jožef Stefan Institute
Department of
Communication Systems

Virtual Machines

• Features

– Portability
– Platform independence
– Programming support

• Concurrency, modular and distributed software
• Bug fixing , reprogramming, adding new tags and functionalities

to a node

Jožef Stefan Institute
Department of
Communication Systems

Virtual Machines

• Trade-off between the resources needed and the services it
provides

• Reduce the distribution energy costs for software updates
– VM code smaller than native machine code
– Simpler reprogramming process

• Additional overhead
– Increased time and memory requirements for execution
– Increased energy spent in interpreting the code

Jožef Stefan Institute
Department of
Communication Systems

Virtual Machines

Name OS ASVM Execution
Model

Platform Memory
requirements

Multi-
threading

Supported programming
language

Mate TinyOS No Stack-based Rene2, Mica 600B RAM
7.5KB ROM

Yes TinyScript

.NET Micro With (TinyOS)/
Without OS

No Stack-based Imote2 512MB ROM
300kB RAM

Yes C#

Darjeeling TinyOS, Contiki,
FOS

No Stack-based Tnode, Tmote
Sky,Fleck3/Fleck3B

2K RAM Yes Java subset

Squawk With(Solaris,
Windows,
MACOSX,Linux)
/Without OS

Yes Stack-based SunSpots
Java Card 3.0

Core:80KB ROM
Libs:270kB ROM

Yes Java

VM* OS* yes Stack-based Mica 6kB ROM
200kB RAM

No Java

SwissQM TinyOS Yes Stack-based Mica2,TmoteSky 33kB ROM
3kB RAM

Yes Java subset

Jožef Stefan Institute
Department of
Communication Systems

Conclusions

• Middleware
– State of the art

• Embedded Operating Systems

• Protocol Stacks

• Virtual machines

Jožef Stefan Institute
Department of
Communication Systems

maria.porcius@ijs.si

