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Contiki - Introduction 
• Lightweight OS for sensor network nodes

• Swedish Institute of Computer Science (http://www.sics.se/)

• Open Source (BSD license)
– Contiki 1.0  - 2003, Contiki 2.0 - 2007, …, Contiki 2.4 - 2010

• Implementation
– C programming language
– Footprint size 

• Bigger then TinyOS (event-driven)
• Smaller than Mantis (preemptive multi-thread)
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Contiki - Features

• Ported to several platforms
– MSP430, AVR, HC12, Z80, 6502, x86 

• Simulators
– COOJA, MSPsim, netsim

• File System – Coffee
– Flash based file system

• Memory management
– Allocation at loading time (both ROM and RAM)
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Contiki - Features

• Modular image
– Core + loadable programs
– Dynamic loading and replacement of individual programs and 

services
– Core cannot be modified after node’s deployment

• Over the air programming 

• No power save mechanisms 
– Lets application specific parts of the system to implement such 

mechanisms  (by exposing the size of the queue)
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Contiki - Features

• Contiki system consists of
– Kernel (CPU multiplexing and has no platform-specific 

code)
• does not provide a hardware abstraction layer, but lets device 

drivers and applications communicate directly with the hardware
– Program loader
– Libraries 
– Set of processes (program or service)

• service is a process implementing functionality used by more 
than application process (e.g. communication)

• communication between processes always goes through the 
kernel
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Contiki - Features

• Contiki uses a hybrid model of event-driven kernel 
and the support for preemptive multi-threading 
– processes in event-driven systems are implemented as 

event handlers that run to completion (cannot block)
– preemptive multi-threading can be used with individual 

processes (e.g. long computations) and is implemented as 
a library

– this allows the threaded programs to run on top of an 
event-based kernel without the overhead of multiple 
stacks
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Contiki - Features

• Event / Thread Hybrid model
– Event-driven kernel

• No preemption – only by interrupts
– Preemptive multi-threading 

• On a per-process basis
• Implemented as a library that can be explicitly linked with 

programs that require multi-threading
• Memory management functions - library

– Protothreads
• Thread-like construct on top of the event-driven Contiki kernel 

(no need of one stack per thread)
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Contiki - Communication 

• Implemented as a service
– Multiple communication stacks can be loaded 

simultaneously
– Run-time replacement of individual parts of a stack 

• Supported protocol stacks
– Rime
– lwIP
– μIP
– μIPv6
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Contiki - Communication

• RIME 
– Extremely thin layers 
– Low overhead
– Not a fully modular structure 

• Only the lowest and upper layer can be replaced
– 2kB ROM, few 10kB RAM 

• lwIP – lightweight IP - 2000
– IPv4 Compatible
– Implemented protocols: UDP, TCP, ICMP and IP
– Modular design – allows extension with additional protocols
– 40kB ROM, 40kB RAM
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Contiki - Communication

• μIP – “the world’s smallest TCP/IP stack” – 2001
– IPv4 compliant
– 6kB ROM, 1kB RAM
– Minimal set of features
– Implemented protocols: TCP, ICMP, IP 

• No UDP support

• μIPv6 - 2008
– IPv6 extension of μIP
– 11.5kB ROM and 1.8kB RAM
– Implemented protocols: TCP, UDP, ICMP, IP
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Requirements

• Large scale, heterogeneous sensor networks
– Platform portability 
– C programming language
– IP communication stack
– Remote reprogramming
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Requirements - Contiki vs. TinyOS

Contiki
• Written in C programming 

language (ported to Texas 
Instruments MSP430 and 
Atmel AVR)

• Event-driven OS with 
optional preemptive 
multi-threading

• Dynamic linking

TinyOS
• Written in nesC

programming 
language (ported to 
Atmel AVR)

• Event-driven OS with 
non-preemptive 
multi-threading

• Statically linked
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Environment and porting

• Contiki directory structure
– /core/

• /dev/ - device drivers (CC1101/CC2500 on SPI)
• /net/ - network drivers

– /cpu/ - common code to all platforms with the same 
microcontroller (stm32f103) 

– /platform/ - platform specific code (VSN v1.2)
– /apps/ - applications (test applications)
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Environment and porting
• ST microcontroller with ARM Cortex-M3 core

• μVision IDE from Keil Software
– Project Management
– Source Code Editing
– C/C++ Compiler 
– Program Debugging

• OS Contiki version 2.4
– kernel
– communication protocol stack Rime
– system clock and event timer files for ARM 

• stm32f103 (from Contiki version 2.x-20100303) 

• Microcontroller drivers STM32F10x version 3.1.2 
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Testbed
• Main function

– Initialization of VSN peripherals
– OS Contiki initialization (processes, Rime protocol stack)

• Packets sending
– on sensor nodes: code for sending packets

• reading temperature and humidity
• periodically broadcasts packets with measures  for broadcasting periodically uses 

event timer

• Packets receiving
– on central node: code for receiving packets

• processing of received packet
• delivering ordered packet’s data to the user 
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Testbed
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Thanks for your attention!

Miha Smolnikar
miha.smolnikar@ijs.si


