
Jozef Stefan Institute
Department of
Communication Systems

Porting Contiki OS to VSN

Erik Pertovt, Miha Smolnikar
Jozef Stefan Institute

Jozef Stefan Institute
Department of
Communication Systems

Outline

Contiki Operating System
Introduction
Features
Communication

Porting Contiki OS to VSN platform
Requirements - Contiki vs. TinyOS
Environment and porting
Testbed

Jozef Stefan Institute
Department of
Communication Systems

Contiki - Introduction
• Lightweight OS for sensor network nodes

• Swedish Institute of Computer Science (http://www.sics.se/)

• Open Source (BSD license)
– Contiki 1.0 - 2003, Contiki 2.0 - 2007, …, Contiki 2.4 - 2010

• Implementation
– C programming language
– Footprint size

• Bigger then TinyOS (event-driven)
• Smaller than Mantis (preemptive multi-thread)

Jozef Stefan Institute
Department of
Communication Systems

Contiki - Features

• Ported to several platforms
– MSP430, AVR, HC12, Z80, 6502, x86

• Simulators
– COOJA, MSPsim, netsim

• File System – Coffee
– Flash based file system

• Memory management
– Allocation at loading time (both ROM and RAM)

Jozef Stefan Institute
Department of
Communication Systems

Contiki - Features

• Modular image
– Core + loadable programs
– Dynamic loading and replacement of individual programs and

services
– Core cannot be modified after node’s deployment

• Over the air programming

• No power save mechanisms
– Lets application specific parts of the system to implement such

mechanisms (by exposing the size of the queue)

Jozef Stefan Institute
Department of
Communication Systems

Contiki - Features

• Contiki system consists of
– Kernel (CPU multiplexing and has no platform-specific

code)
• does not provide a hardware abstraction layer, but lets device

drivers and applications communicate directly with the hardware
– Program loader
– Libraries
– Set of processes (program or service)

• service is a process implementing functionality used by more
than application process (e.g. communication)

• communication between processes always goes through the
kernel

Jozef Stefan Institute
Department of
Communication Systems

Contiki - Features

• Contiki uses a hybrid model of event-driven kernel
and the support for preemptive multi-threading
– processes in event-driven systems are implemented as

event handlers that run to completion (cannot block)
– preemptive multi-threading can be used with individual

processes (e.g. long computations) and is implemented as
a library

– this allows the threaded programs to run on top of an
event-based kernel without the overhead of multiple
stacks

Jozef Stefan Institute
Department of
Communication Systems

Contiki - Features

• Event / Thread Hybrid model
– Event-driven kernel

• No preemption – only by interrupts
– Preemptive multi-threading

• On a per-process basis
• Implemented as a library that can be explicitly linked with

programs that require multi-threading
• Memory management functions - library

– Protothreads
• Thread-like construct on top of the event-driven Contiki kernel

(no need of one stack per thread)

Jozef Stefan Institute
Department of
Communication Systems

Contiki - Communication

• Implemented as a service
– Multiple communication stacks can be loaded

simultaneously
– Run-time replacement of individual parts of a stack

• Supported protocol stacks
– Rime
– lwIP
– μIP
– μIPv6

Jozef Stefan Institute
Department of
Communication Systems

Contiki - Communication

• RIME
– Extremely thin layers
– Low overhead
– Not a fully modular structure

• Only the lowest and upper layer can be replaced
– 2kB ROM, few 10kB RAM

• lwIP – lightweight IP - 2000
– IPv4 Compatible
– Implemented protocols: UDP, TCP, ICMP and IP
– Modular design – allows extension with additional protocols
– 40kB ROM, 40kB RAM

Jozef Stefan Institute
Department of
Communication Systems

Contiki - Communication

• μIP – “the world’s smallest TCP/IP stack” – 2001
– IPv4 compliant
– 6kB ROM, 1kB RAM
– Minimal set of features
– Implemented protocols: TCP, ICMP, IP

• No UDP support

• μIPv6 - 2008
– IPv6 extension of μIP
– 11.5kB ROM and 1.8kB RAM
– Implemented protocols: TCP, UDP, ICMP, IP

Jozef Stefan Institute
Department of
Communication Systems

Outline

Contiki Operating System
Introduction
Features
Communication

Porting Contiki OS to VSN platform
Requirements - Contiki vs. TinyOS
Environment and porting
Testbed

Jozef Stefan Institute
Department of
Communication Systems

Requirements

• Large scale, heterogeneous sensor networks
– Platform portability
– C programming language
– IP communication stack
– Remote reprogramming

Jozef Stefan Institute
Department of
Communication Systems

Requirements - Contiki vs. TinyOS

Contiki
• Written in C programming

language (ported to Texas
Instruments MSP430 and
Atmel AVR)

• Event-driven OS with
optional preemptive
multi-threading

• Dynamic linking

TinyOS
• Written in nesC

programming
language (ported to
Atmel AVR)

• Event-driven OS with
non-preemptive
multi-threading

• Statically linked

Jozef Stefan Institute
Department of
Communication Systems

Environment and porting

• Contiki directory structure
– /core/

• /dev/ - device drivers (CC1101/CC2500 on SPI)
• /net/ - network drivers

– /cpu/ - common code to all platforms with the same
microcontroller (stm32f103)

– /platform/ - platform specific code (VSN v1.2)
– /apps/ - applications (test applications)

Jozef Stefan Institute
Department of
Communication Systems

Environment and porting
• ST microcontroller with ARM Cortex-M3 core

• μVision IDE from Keil Software
– Project Management
– Source Code Editing
– C/C++ Compiler
– Program Debugging

• OS Contiki version 2.4
– kernel
– communication protocol stack Rime
– system clock and event timer files for ARM

• stm32f103 (from Contiki version 2.x-20100303)

• Microcontroller drivers STM32F10x version 3.1.2

Jozef Stefan Institute
Department of
Communication Systems

Testbed
• Main function

– Initialization of VSN peripherals
– OS Contiki initialization (processes, Rime protocol stack)

• Packets sending
– on sensor nodes: code for sending packets

• reading temperature and humidity
• periodically broadcasts packets with measures for broadcasting periodically uses

event timer

• Packets receiving
– on central node: code for receiving packets

• processing of received packet
• delivering ordered packet’s data to the user

Jozef Stefan Institute
Department of
Communication Systems

Testbed

Sensor
nodes

Central
node

Jozef Stefan Institute
Department of
Communication Systems

Thanks for your attention!

Miha Smolnikar
miha.smolnikar@ijs.si

