Porting Contiki OS to VSN

Erik Pertovt, Miha Smolnikar
Jozef Stefan Institute

é’,"} AgroSense

Outline

Contiki Operating System
Introduction
Features
Communication

Porting Contiki OS to VSN platform
Requirements - Contiki vs. TinyOS
Environment and porting
Testbed

Jozef Stefan Institute
Department of
Communication Systems

Contiki - Introduction

Lightweight OS for sensor network nodes
Swedish Institute of Computer Science (http://www.sics.se/)

Open Source (BSD license)
— Contiki 1.0 - 2003, Contiki 2.0 - 2007, ..., Contiki 2.4 - 2010

Implementation
— Cprogramming language
— Footprint size

* Bigger then TinyOS (event-driven)
e Smaller than Mantis (preemptive multi-thread)

Jozef Stefan Institute
Department of
Communication Systems

Contiki - Features

Ported to several platforms
— MSP430, AVR, HC12, Z80, 6502, x86

Simulators
— COOQOJA, MSPsim, netsim

File System — Coffee
— Flash based file system

Memory management
— Allocation at loading time (both ROM and RAM)

Jozef Stefan Institute
Department of
Communication Systems

Contiki - Features

e Modular image
— Core + loadable programs

— Dynamic loading and replacement of individual programs and
services

— Core cannot be modified after node’s deployment

e QOver the air programming

 No power save mechanisms

— Lets application specific parts of the system to implement such
mechanisms (by exposing the size of the queue)

Jozef Stefan Institute
Department of
Communication Systems

Contiki - Features

e Contiki system consists of

— Kernel (CPU multiplexing and has no platform-specific
code)

* does not provide a hardware abstraction layer, but lets device
drivers and applications communicate directly with the hardware

— Program loader
— Libraries

— Set of processes (program or service)

e service is a process implementing functionality used by more
than application process (e.g. communication)

e communication between processes always goes through the
kernel

Jozef Stefan Institute
Department of
Communication Systems

Contiki - Features

e Contiki uses a hybrid model of event-driven kernel
and the support for preemptive multi-threading

— processes in event-driven systems are implemented as
event handlers that run to completion (cannot block)

— preemptive multi-threading can be used with individual
processes (e.g. long computations) and is implemented as
a library

— this allows the threaded programs to run on top of an
event-based kernel without the overhead of multiple
stacks

Jozef Stefan Institute
Department of
Communication Systems

Contiki - Features

e Event/ Thread Hybrid model

— Event-driven kernel
e No preemption —only by interrupts
— Preemptive multi-threading

e On a per-process basis

* Implemented as a library that can be explicitly linked with
programs that require multi-threading

 Memory management functions - library

— Protothreads

e Thread-like construct on top of the event-driven Contiki kernel
(no need of one stack per thread)

Jozef Stefan Institute
Department of
Communication Systems

Contiki - Communication

* Implemented as a service

— Multiple communication stacks can be loaded
simultaneously

— Run-time replacement of individual parts of a stack

e Supported protocol stacks
— Rime
— |wlP
— MIP
— uIPv6

Jozef Stefan Institute
Department of
Communication Systems

Contiki - Communication

RIME

— Extremely thin layers

— Low overhead

— Not a fully modular structure

* Only the lowest and upper layer can be replaced
— 2kB ROM, few 10kB RAM

lwIP — lightweight IP - 2000
— |Pv4 Compatible
— Implemented protocols: UDP, TCP, ICMP and IP

— Modular design — allows extension with additional protocols
— 40kB ROM, 40kB RAM

Jozef Stefan Institute
Department of
Communication Systems

Contiki - Communication

uP — “the world’s smallest TCP/IP stack” — 2001
— IPv4 compliant

— 6kB ROM, 1kB RAM

— Minimal set of features

— Implemented protocols: TCP, ICMP, IP
* No UDP support

uIPve - 2008

— |Pv6 extension of pulP

— 11.5kB ROM and 1.8kB RAM

— Implemented protocols: TCP, UDP, ICMP, IP

Jozef Stefan Institute
Department of
Communication Systems

Outline

Porting Contiki OS to VSN platform
Requirements - Contiki vs. TinyOS

Environment and porting
Testbed

Jozef Stefan Institute
Department of
Communication Systems

Requirements

e lLarge scale, heterogeneous sensor networks
— Platform portability
— C programming language
— IP communication stack

— Remote reprogramming

Jozef Stefan Institute
Department of
Communication Systems

Requirements - Contiki vs. TinyOS

Contiki TinyOS

e Written in C programming Written in nesC
language (ported to Texas programming
Instruments MSP430 and language (ported to
Atmel AVR) Atmel AVR)

e Event-driven OS with
optional preemptive
multi-threading

e Dynamic linking

e Event-driven OS with
non-preemptive
multi-threading

e Statically linked

Jozef Stefan Institute
Department of
Communication Systems

Environment and porting

e Contiki directory structure

— /core/
e /dev/ -device drivers (CC1101/CC2500 on SPI)

e /net/ - network drivers

— /cpu/ - common code to all platforms with the same
microcontroller (stm32£103)

— /platform/ - platform specific code (VSN v1.2)
— /apps/ - applications (test applications)

Jozef Stefan Institute
Department of
Communication Systems

Environment and porting

ST microcontroller with ARM Cortex-M3 core

puVision IDE from Keil Software
— Project Management
— Source Code Editing
— C/C++ Compiler
— Program Debugging

OS Contiki version 2.4
— kernel
— communication protocol stack Rime

— system clock and event timer files for ARM
e stm32f103 (from Contiki version 2.x-20100303)

Microcontroller drivers STM32F10x version 3.1.2
Jozef Stefan Institute

Department of
Communication Systems

Testbed

e Main function
— Initialization of VSN peripherals
— OS Contiki initialization (processes, Rime protocol stack)

* Packets sending

— on sensor nodes: code for sending packets
e reading temperature and humidity

e periodically broadcasts packets with measures for broadcasting periodically uses
event timer

e Packets receiving

— on central node: code for receiving packets
e processing of received packet
e delivering ordered packet’s data to the user

Jozef Stefan Institute
Department of
Communication Systems

] Advanced Serial Port Monitor 3.5.3 build 41 =

File View Edit Options Datasource Mode Plugins Help
COM port COMS [-| Baud rate 9600 |+| Databits 8 |- &2 =4 o &
Parity type None E| Stop bits 1 H Autodelay] 500 2
- | send | @ Open
BROADCAST RECEIVE! [len=18]
RE5I=-71 dBm [len=12]
Link Quality=212 [len=16]
Dolzina paketa=60 [len=17]
Received messaye=-Temperature=28.72 Humidity=43.42 [len=49]
[len=0]
Channel: [len=9]
129 [len=3]
00 [len=2]
[len=0]
SENDER IS: [len=11]
66 [len=2]
00 [len=2]
[len=0]
—————————————————————————— [len=26]
BROADCAST RECEIVE! [len=18]
R35I=-74 dBmu [len=12]
Link Quality=161 [len=1k]
Dolzolzina paketa=60 [len=20]
Received message=-Temperature=27.68 Humidity=43.68 [len=43]
[len=0]
Channel: [len=9]
129 [len=3]
00 [len=2]
[len=0]
SENDER IS: [len=11]
33 [len-2]
00 [len=2]
[len=0]

= [len=26]
BROADCAST REBROADCAST RECEIVE! [len=30]
REEI=-72 dBm [len=12]
Link Quality=153 [len=16A]
Dolzina paketa=60 [len=17]
Received message=Temperature=28.69,Humidity=43.82 [len=498]
[len=0]
M s i NOTEBOOK Channel: [len=9]
129 [len=3]
00 [len=2]
CENTRAL E [len=0]

. NODE L SENDER IS: [len=11]
[\ 66 [len-2]
| 00 [len=2]
A= [len=0]
. ® @ WommmmmmomomTootommmom—man [len=286]

|) BROADCAST RECEIVE! [len=18]
RS5I=-16 dBm [len=12]

o T Link Quality=114 [len=16]
U&qu UQ:fU‘ OF Uwu Dolzina paketa-60 [len-17]

Wirite to file - | F Clear

/ —-—
JOMis closer Mode> Manual Source> String

=l 4Tk J |

Jozef Stefan Institute
Department of
Communication Systems

Thanks for your attention!

Miha Smolnikar

miha.smolnikar@ijs.si

é“? AgroSense

