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Aim:

• Some thoughts on why theory

• Basic Techniques with some deference to history

• Insights into proof techniques and statistical
learning approaches

• Complete proof of SVM bound using Rademacher
approach
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What won’t be included:

• The most general results

• Complete History

• Analysis of Bayesian inference

• Most recent developments, eg PAC-Bayes, local
Rademacher complexity, etc.
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Theories of learning

• Basic approach of SLT is to view learning from a
statistical viewpoint.

• Aim of any theory is to model real/ artificial
phenomena so that we can better understand/
predict/ exploit them.

• SLT is just one approach to understanding/
predicting/ exploiting learning systems, others
include Bayesian inference, inductive inference,
statistical physics, traditional statistical analysis.
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Theories of learning cont.

• Each theory makes assumptions about the
phenomenon of learning and based on these
derives predictions of behaviour as well as
algorithms that aim at optimising the predictions.

• Each theory has strengths and weaknesses –
the better it captures the details of real world
experience, the better the theory and the better
the chances of it making accurate predictions
and driving good algorithms.
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General statistical considerations

• Statistical models (not including Bayesian) begin
with an assumption that the data is generated
by an underlying distribution P typically not given
explicitly to the learner.

• If we are trying to classify cancerous tissue from
healthy tissue, there are two distributions, one for
cancerous cells and one for healthy ones.

Berder Island Summer School, September 2004 6



General statistical considerations cont.

• Usually the distribution subsumes the processes
of the natural/artificial world that we are studying.

• Rather than accessing the distribution directly,
statistical learning typically assumes that we are
given a ‘training sample’ or ‘training set’

S = {(x1, y1), . . . , (xm, ym)}

generated identically and independently (i.i.d.)
according to the distribution P .
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Generalisation of a learner

• Assume that we have a learning algorithm A that
chooses a function AF(S) from a function space
F in response to the training set S.

• From a statistical point of view the quantity of
interest is the random variable:

ǫ(S,A, F) = E(x,y) [ℓ(AF(S),x, y)] ,

where ℓ is a ‘loss’ function that measures the
discrepancy between AF(S)(x) and y.
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Generalisation of a learner

• For example, in the case of classification ℓ is 1
if the two disagree and 0 otherwise, while for
regression it could be the square of the difference
between AF(S)(x) and y.

• We refer to the random variable ǫ(S, A,F) as the
generalisation of the learner.
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Example of Generalisation I

• We consider the Breast Cancer dataset from the
UCI repository.

• Use the simple Parzen window classifier described
by Bernhard Schölkopf: weight vector is

w
+ − w

−

where w
+ is the average of the positive training

examples and w
− is average of negative training

examples. Threshold is set so hyperplane
bisects the line joining these two points.
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Example of Generalisation II

• Given a size m of the training set, by repeatedly
drawing random training sets S we estimate the
distribution of

ǫ(S,A, F) = E(x,y) [ℓ(AF(S),x, y)] ,

by using the test set error as a proxy for the true
generalisation.

• We plot the histogram and the average of the
distribution for various sizes of training set –
initially the whole dataset gives a single value if
we use training and test as the all the examples,
but then we plot for training set sizes:

342, 273, 205, 137, 68, 34, 27, 20, 14, 7.
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Example of Generalisation III

• Since the expected classifier is in all cases the
same:

E [AF(S)] = ES

[

w
+
S − w

−
S

]

= ES

[

w
+
S

]

− ES

[

w
−
S

]

= Ey=+1 [x] − Ey=−1 [x] ,

we do not expect large differences in the average
of the distribution, though the non-linearity of
the loss function means they won’t be the same
exactly.
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Error distribution: full dataset
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Error distribution: dataset size: 342
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Error distribution: dataset size: 273
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Error distribution: dataset size: 205
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Error distribution: dataset size: 137
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Error distribution: dataset size: 68
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Error distribution: dataset size: 34
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Error distribution: dataset size: 27
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Error distribution: dataset size: 20
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Error distribution: dataset size: 14
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Error distribution: dataset size: 7
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Bayes risk and consistency
• Traditional statistics has concentrated on analysing

ES [ǫ(S,A,F)] .

• For example consistency of a classification
algorithm A and function class F means

lim
m→∞

ES [ǫ(S,A, F)] = fBayes,

where

fBayes(x) =

{

1 ifP (x, 1) > P (x, 0),
0 otherwise.

is the function with the lowest possible risk, often
referred to as the Bayes risk.
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Expected versus confident bounds

• For a finite sample the generalisation ǫ(S,A, F)
has a distribution depending on the algorithm,
function class and sample size m.

• Traditional statistics as indicated above has
concentrated on the mean of this distribution –
but this quantity can be misleading, eg for low
fold cross-validation.
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Expected versus confident bounds
cont.

• Statistical learning theory has preferred to
analyse the tail of the distribution, finding a bound
which holds with high probability.

• This looks like a statistical test – significant at a
1% confidence means that the chances of the
conclusion not being true are less than 1% over
random samples of that size.

• This is also the source of the acronym PAC:
probably approximately correct, the ‘confidence’
parameter δ is the probability that we have been
misled by the training set.
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Probability of being misled in
classification

• Aim to cover a number of key techniques of
SLT. Basic approach is usually to bound the
probability of being misled and set this equal to
δ.

• What is the chance of being misled by a single
bad function f , i.e. training error errS(f) = 0,
while true error is bad err(f) > ǫ?

PS {errS(f) = 0, err(f) > ǫ} = (1 − err(f))
m

≤ (1 − ǫ)
m

≤ exp(−ǫm).

so that choosing ǫ = ln(1/t)/m ensures
probability less than t.
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Finite or Countable function classes
If we now consider a function class

F = {f1, f2, . . . , fn, . . .}

and make the probability of being misled by fn less
than qnδ with

∞
∑

n=1

qn ≤ 1,

then the probability of being misled by one of the
functions is bounded by

PS

{

∃fn: errS(fn) = 0, err(fn) >
1

m
ln

(

1

qnδ

)}

≤ δ.

This uses the so-called union bound – the
probability of the union of a set of events is at most
the sum of the individual probabilities.
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Finite or Countable function classes
result

• The bound translates into a theorem: given F

and q, with probability at least 1 − δ over random
m samples the generalisation error of a function
fn ∈ F with zero training error is bounded by

err(fn) ≤ 1

m

(

ln

(

1

qn

)

+ ln

(

1

δ

))
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Some comments on the result

• We can think of the term ln
(

1
qn

)

as the
complexity / description length of the function fn.

• Note that we must put a prior weight on the
functions. If the functions are drawn at random
according to a distribution pn, the expected
generalisation will be minimal if we choose our
prior q = p.

• This is the starting point of the PAC-Bayes
analysis.

Berder Island Summer School, September 2004 30



What if uncountably many functions?

• We need a way to convert from an infinite set to
a finite one.

• Key idea is to replace measuring performance on
a random test point with measuring on a second
‘ghost’ sample

• In this way the analysis is reduced to a finite
set of examples and hence a finite set of
classification functions.

• This step is often referred to as the ‘double
sample trick’
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Double sample trick
The result has the following form:

P m{X ∈ Xm : ∃h ∈ H : errX(h) = 0, err(h) ≥ ǫ}
≤ 2P 2m{XY ∈ X2m : ∃h ∈ H :

errX(h) = 0, errY(h) ≥ ǫ/2}

If we think of the first probability as being over XY

the result concerns three events:

A(h) := {errX(h) = 0}
B(h) := {err(h) ≥ ǫ}
C(h) := {errY(h) ≥ ǫ/2}
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Double sample trick II

It is clear that

P 2m(C(h)|A(h)&B(h)) = P 2m(C(h)|B(h))

> 0.5

for reasonable m by a binomial tail bound.
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Double sample trick II

Hence, we have

P 2m{XY ∈ X2m : ∃h ∈ H : A(h)&C(h)} ≥
P 2m{XY ∈ X2m : ∃h ∈ H : A(h)&B(h)&C(h)} =

P 2m{XY ∈ X2m : ∃h ∈ H : A(h)&B(h)}
P (C(h)|A(h)&B(h))

It follows that

P m{X ∈ Xm : ∃h ∈ H : A(h)&B(h)} ≤
2P 2m{XY ∈ X2m : ∃h ∈ H : A(h)&C(h)}

the required result.
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How many functions on a finite
sample?

• Let H be a set of {−1, 1} valued functions.

• The growth function BH(m) is the maximum
cardinality of the set of functions H when
restricted to m points – note that this cannot be
larger than 2m, i.e. log2(BH(m)) ≤ m

• For the statistics to work we want the number of
functions to be much smaller than this.
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Examining the growth function

Consider a plot of the ratio of the growth function
BH(m) to 2m for linear functions in a 20 dimensional
space:
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Vapnik Chervonenkis dimension

• The Vapnik-Chervonenkis dimension is the point
at which the graph stops being linear:

VCdim(H) = max{m : for some x1, . . . ,xm,

for all b ∈ {−1, 1}m,

∃hb ∈ H, hb(xi) = bi}

• For linear functions L in R
n, VCdim(L) = n + 1.
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Sauer’s Lemma

• Sauer’s Lemma:

BH(m) ≤
d
∑

i=0

(

m

i

)

≤
(em

d

)d

,

where m ≥ d = VCdim(H).
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Basic Theorem of SLT

We want to bound the probability that the training
examples can mislead us about one of the functions
we are considering using:

P m{X ∈ Xm : ∃h ∈ H : errX(h) = 0, err(h) ≥ ǫ}
→ double sample trick →
≤ 2P 2m{XY ∈ X2m : ∃h ∈ H :

errX(h) = 0, errY(h) ≥ ǫ/2}
→ union bound →
≤ 2BH(2m)P 2m{XY ∈ X2m :

errX(h) = 0, errY(h) ≥ ǫ/2}

Final ingredient is known as symmetrisation.
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Symmetrisation

• Consider generating a 2m sample S. Since
the points are generated independently the
probability of generating the same set of points
in a different order is the same.

• Consider a fixed set Σ of permutations and each
time we generate a sample we randomly permute
it with a uniformly chosen element of Σ – gives
probability distribution P 2m

Σ
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Symmetrisation cont.

• Any event has equal probability under P 2m and
P 2m

Σ , so that

P 2m(A) = P 2m
Σ (A) = E

2m [Pσ∼Σ(A)]

• Consider particular choice of Σ the permutations
that swap/leave unchanged corresponding elements
of the two samples X and Y – 2m such
permutations.
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Completion of the proof

P 2m{XY ∈ X2m : errX(h) = 0, errY(h) ≥ ǫ/2}
≤ E

2m [Pσ∼Σ{errX(h) = 0, errY(h) ≥ ǫ/2 for σ(XY)}]

≤ E
2m
[

2−ǫm/2
]

= 2−ǫm/2

• Setting the right hand side equal to δ/(2BH(2m))
and inverting gives the bound on ǫ.
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Final result

• Assembling the ingredients gives the result: with
probability at least 1−δ of random m samples the
generalisation error of a function h ∈ H chosen
from a class H with VC dimension d with zero
training error is bounded by

ǫ = ǫ(m,H, δ) =
2

m

(

d log
2em

d
+ log

2

δ

)

• Note that we can think of d as the complexity /
capacity of the function class H.
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Lower bounds

• VCdim Characterises Learnability in PAC setting:
there exist distributions such that with probability
at least δ over m random examples, the error of
h is at least

max

(

d − 1

32m
,

1

m
log

(

1

δ

))

.
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Non-zero training error

• Very similar results can be obtained for non-zero
training error.

• The main difference is the introduction of a
square root to give a bound of the form

ǫ(m,H, k, δ) = k + O

(
√

d

m
log

2em

d
+

√

1

m
log

2

δ

)

for k training errors, which is significantly worse
than in the zero training error case.

• PAC-Bayes bounds now interpolate between
these two.
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Criticisms of PAC Theory

• The theory is certainly valid and the lower
bounds indicate that it is not too far out – so can’t
criticise as stands

• Criticism is that it doesn’t accord with experience
of those applying learning.

• Mismatch between theory and practice.

• For example
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Support Vector Machines (SVM)

One example of PAC failure is in analysing SVMs:
linear functions in very high dimensional feature
spaces.

1. kernel trick means we can work in an infinite
dimensional feature space (⇒ infinite VC
dimension) so that PAC result does not apply:

2. and YET very impressive performance
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Support Vector Machines cont.

3. SVM seeks linear function in a feature space
defined implicitly via a kernel κ:

κ(x, z) = 〈φ(x), φ(z)〉

4. For example the 1-norm SVM seeks w to solve

minw,b,γ,ξ ‖w‖2 + C
∑m

i=1 ξi

subject to yi (〈w, φ (xi)〉 + b) ≥ 1 − ξi, ξi ≥ 0,
i = 1, . . . , m.
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Margin in SVMs

• Intuition behind SVMs is that maximising the
margin makes it possible to obtain good
generalisation despite the high VC dimension

• The lower bound implies that we must be taking
advantage of a benign distribution, since we
know that in the worst case generalisation will be
bad.
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Margin in SVMs cont

• Hence, we require a theory that can give bounds
that are sensitive to serendipitous distributions –
in particular we conjecture that the margin is an
indication of such ‘luckiness’.

• The proof approach will rely on using real-
valued function classes. The margin gives an
indication of the accuracy with which we need
to approximate the functions when applying the
statistics.
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Covering Numbers

F a class of real functions defined on X and ‖ · ‖d a
norm on F, then

N(γ, F, ‖ · ‖d)

is the smallest size set Uγ such that
for any f ∈ F there is a u ∈ Uγ such that ‖f −u‖d <
γ.
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Covering Numbers cont.

For generalization bounds we need the γ-growth
function,

N
m(γ, F) := sup

X∈Xm
N(γ, F, ℓX

∞).

where ℓX

∞ gives the distance between two functions
as the maximum difference between their outputs
on the sample.
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Second statistical result

• We want to bound the probability that the training
examples can mislead us about one of the
functions with margin bigger than fixed γ:

P m{X ∈ Xm : ∃f ∈ F : errX(f) = 0, mX(f) ≥ γ, errP (f) ≥ ǫ}
≤ 2P 2m{XY ∈ X2m : ∃f ∈ F such that

errX(f) = 0, mX(f) ≥ γ, errY(f) ≥ ǫ/2}
≤ 2N2m(γ/2, F)P 2m{XY ∈ X2m : for fixed f ′

mX(f ′) > γ/2,mY(ǫm/2)(f
′) < γ/2}

≤ 2N2m(γ/2, F)2−ǫm/2 ≤ δ
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Second statistical result cont.

• inverting gives

ǫ = ǫ(m, F, δ, γ) =
2

m

(

log2 N
2m(γ/2,F) + log2

2

δ

)

i.e. with probability 1 − δ over m random
examples a margin γ hypothesis has error less
than ǫ. Must apply for finite set of γ (‘do SRM
over γ’).

Berder Island Summer School, September 2004 54



Bounding the covering numbers

Have the following correspondences with the
standard VC case (easy slogans):

Growth function – γ-growth function

Vapnik Chervonenkis dim – Fat shattering dim

Sauer’s Lemma – Alon et al.
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Covering numbers for linear functions

• For the case of linear functions there is a more
direct route to bounding the covering numbers.

• We convert the γ/2 approximation on the sample
problem into a classification problem, which is
solvable with a margin of γ/2.

• It follows that if we use the perceptron algorithm
to find a classifier, we will find a function
satisfying the γ/2 approximation with just 8R2/γ2

updates.
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Covering numbers for linear functions

• This gives a sparse dual representation of the
function. The covering is chosen as the set of
functions with small sparse dual representations.

• Gives a bound on the size of the covering
numbers of the form

log2 N
2m(γ/2,F) ≤ k log2

e(2m + k − 1)

k

where k =
8R2

γ2
.
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Generalization of SVMs

For distribution with support in ball of radius R,
(eg Gaussian Kernels R = 1) and margin γ, have
bound:

ǫ(m, L, δ, γ) =
2

m

(

k log2

e(2m + k − 1)

k
+ log2

m

δ

)

where k = 8R2

γ2 .
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Exercise: reconstruct the bound on the
covering numbers!

log2 N
m(γ,F) ≤ k log2

e(m + k − 1)

k

where k =
2R2

γ2
.

• Overnight,

• can work in groups (all members get all the
points),

• can ask for help from me but points will be
deducted for each hint given to a group.

Three parts:
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Exercise 1

1. Prove the perceptron convergence theorem
that the number of updates of the perceptron
algorithm is bounded by

R2

γ2

where ‖xi‖ ≤ R for all i = 1, . . . ,m and γ is the
margin of a correctly classifying hyperplane with
normalised weight vector w

⋆ and no threshold.

Hint: Compute an upper bound on ‖wt‖2 the
norm squared of the weight vector after t
updates. Compute a lower bound on the value
of 〈wt,w

⋆〉 and use the two bounds to show
that t cannot grow indefinitely.

Value: 3 points.
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Exercise 2

2. Show how the problem of guaranteeing that
a weight vector is learnt that approximates
〈wSVM,xi〉 to within ±γ/2 for all i is converted
to a classification problem.

Hint: Add an extra dimension to the inputs to
cater for the output value of the classifier to be
approximated.

Value: 5 points.
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Exercise 3

3. Bound the number of weight vectors in the class:
{

w =
m
∑

i=1

αiyixi : αi ∈ N,
m
∑

i=1

αi = B

}

Hint: This is a combinatorial question of how many
ways you can place balls into pigeon holes.

Value: 5 points.
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Concentration inequalities

• Statistical Learning is concerned with the
reliability or stability of inferences made from a
random sample.

• Random variables with this property have been
a subject of ongoing interest to probabilists and
statisticians.
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Concentration inequalities cont.

• As an example consider the mean of a sample of
m 1-dimensional random variables X1, . . . , Xm:

Sm =
1

m

m
∑

i=1

Xi.

• Hoeffding’s inequality states that if Xi ∈ [ai, bi]

P{|Sm − E[Sm]| ≥ ǫ} ≤ 2 exp

(

− 2m2ǫ2
∑m

i=1(bi − ai)2

)

Note how the probability falls off exponentially
with the distance from the mean and with the
number of variables.
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Concentration for SLT

• We are now going to look at deriving SLT results
from concentration inequalities.

• Perhaps the best known form is due to
McDiarmid (although he was actually representing
previously derived results):
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McDiarmid’s inequality

Theorem 1. Let X1, . . . , Xn be independent random
variables taking values in a set A, and assume that
f : An → R satisfies

sup
x1,...,xn,x̂i∈A

|f(x1, . . . , xn) − f(x1, . . . , x̂i, xi+1, . . . , xn)| ≤ ci,

for 1 ≤ i ≤ n. Then for all ǫ > 0,

P {f (X1, . . . ,Xn) − Ef (X1, . . . , Xn) ≥ ǫ} ≤ exp

( −2ǫ2
∑n

i=1 c2
i

)

• Hoeffding is a special case when f(x1, . . . , xn) =
Sn
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Using McDiarmid

• By setting the right hand side equal to δ, we can
always invert McDiarmid to get a high confidence
bound: with probability at least 1 − δ

f (X1, . . . ,Xn) < Ef (X1, . . . , Xn) +

√

∑n
i=1 c2

i

2
log

1

δ

• If ci = c/n for each i this reduces to

f (X1, . . . , Xn) < Ef (X1, . . . ,Xn) +

√

c2

2n
log

1

δ

Berder Island Summer School, September 2004 67



Stability bounds

• Stability is used here as a technical restriction on
learning algorithms introduced by Bousquet and
Elisseeff. It enables a fairly direct application of
concentration results.
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Uniform stability

• An algorithm A is uniformly stable with respect to
the loss function ℓ if

for all S,
∥

∥

∥ℓ(A(S), ·) − ℓ(A(S\i), ·)
∥

∥

∥

∞
≤ β,

where S\i denotes the training set S with its ith
element removed.

• The bound on generalisation is obtained by
applying McDiarmid’s theorem to the random
variable

D(S) = E [ℓ(A(S), ·)] − Ê [ℓ(A(S), ·)]
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Stability bound proof

• In order to apply McDiarmid we must bound
the amount by which D(S) can change if we
substitute one element of S.

• First observe

∣

∣E [ℓ(A(S), ·)] − E
[

ℓ(A(Si), ·)
]∣

∣

≤
∣

∣

∣
E [ℓ(A(S), ·)] − E

[

ℓ(A(S\i), ·)
]∣

∣

∣

+
∣

∣

∣E

[

ℓ(A(S\i), ·)
]

− E
[

ℓ(A(Si), ·)
]

∣

∣

∣

≤ 2β,

where Si denotes the set S with ith element
replaced.
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Stability bound proof cont.

• Similarly

∣

∣

∣Ê [ℓ(A(S), ·)] − Ê
[

ℓ(A(Si), ·)
]

∣

∣

∣

≤
∣

∣

∣Ê [ℓ(A(S), ·)] − Ê

[

ℓ(A(S\i), ·)
]∣

∣

∣

+
∣

∣

∣
Ê

[

ℓ(A(S\i), ·)
]

− Ê
[

ℓ(A(Si), ·)
]

∣

∣

∣

≤ 2β +
1

m
,

Berder Island Summer School, September 2004 71



Stability bound proof cont.

• Hence,

∣

∣D(S) − D(Si)
∣

∣ ≤ 4β +
1

m
,

Hence, an application of McDiarmid gives with
probability at least 1 − δ

D(S) ≤ E [D(S)] + (4mβ + 1)

√

1

2m
log

1

δ
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Final result

• We can also bound

E [D(S)] ≤ 2β

so that the final bound gives

E [ℓ(A(S), ·)] ≤ Ê [ℓ(A(S), ·)] + 2β + (4mβ + 1)

√

1

2m
log

1

δ

with probability at least 1 − δ.
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Applications of result

• For applications we require β = c/m. For
example for 1-norm SVM with regularisation
constant C we have

β ≤ CR2

2m

where the empirical loss is the average of the
slack variables – clearly the bound is no good for
hard margin SVMs as C → ∞.
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Rademacher complexity

• Rademacher complexity is a new way of
measuring the complexity of a function class. It
arises naturally if we rerun the proof using the
double sample trick and symmetrisation but look
at what is actually needed to continue the proof:
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Rademacher proof beginnings
For a fixed f ∈ F we have

E [f(z)] ≤ Ê [f(z)] + sup
h∈F

(

E[h] − Ê[h]
)

.

where F is a class of functions mapping from Z to
[0, 1] and Ê denotes the sample average.

We must bound the size of the second term. First
apply McDiarmid’s inequality to obtain (ci = 1/m for
all i) with probability at least 1 − δ:

sup
h∈F

(

E[h] − Ê[h]
)

≤ ES

[

sup
h∈F

(

E[h] − Ê[h]
)

]

+

√

ln(1/δ)

2m
.
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Deriving double sample result

• We can now move to the ghost sample by simply
observing that E[h] = ES̃

[

Ê[h]
]

:

ES

[

sup
h∈F

(

E[h] − Ê[h]
)

]

=

ES

[

sup
h∈F

ES̃

[

1

m

m
∑

i=1

h(z̃i) −
1

m

m
∑

i=1

h(zi)

∣

∣

∣

∣

∣

S

]]
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Deriving double sample result cont.

Since the sup of an expectation is less than or
equal to the expectation of the sup (we can make
the choice to optimise for each S̃) we have

ES

[

sup
h∈F

(

E[h] − Ê[h]
)

]

≤

ESES̃

[

sup
h∈F

1

m

m
∑

i=1

(h(z̃i) − h(zi))

]
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Adding symmetrisation
Here symmetrisation is again just swapping
corresponding elements – but we can write this as
multiplication by a variable σi which takes values ±1
with equal probability:

ES

[

sup
h∈F

(

E[h] − Ê[h]
)

]

≤

≤ EσSS̃

[

sup
h∈F

1

m

m
∑

i=1

σi (h(z̃i) − h(zi))

]

≤ 2ESσ

[

sup
h∈F

∣

∣

∣

∣

∣

1

m

m
∑

i=1

σih(zi)

∣

∣

∣

∣

∣

]

= Rm (F) ,
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Rademacher complexity

where

Rm(F) = ESσ

[

sup
f∈F

∣

∣

∣

∣

∣

2

m

m
∑

i=1

σif (zi)

∣

∣

∣

∣

∣

]

.

is known as the Rademacher complexity of the
function class F.
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Main Rademacher theorem
Putting the pieces together gives the main theorem
of Rademacher complexity: with probability at least
1− δ over random samples S of size m, every f ∈ F

satisfies

E [f(z)] ≤ Ê [f(z)] + Rm(F) +

√

ln(1/δ)

2m

• Note that Rademacher complexity gives the
expected value of the maximal correlation with
random noise – a very natural measure of
capacity.

• Note that the Rademacher complexity is distribution
dependent since it involves an expectation over
the choice of sample – this might seem hard to
compute.
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Empirical Rademacher theorem

• Since the empirical Rademacher complexity

R̂m(F) = Eσ

[

sup
f∈F

∣

∣

∣

∣

∣

2

m

m
∑

i=1

σif (zi)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z1, . . . , zm

]

is concentrated, we can make a further
application of McDiarmid to obtain with probability
at least 1 − δ

ED [f(z)] ≤ Ê [f(z)] + R̂m(F) + 3

√

ln(2/δ)

2m
.
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Relation to VC theorem

• For H a class of ±1 valued functions with VC
dimension d, we can upper bound R̂m(H) using
Hoeffding’s inequality to upper bound

P

{∣

∣

∣

∣

∣

m
∑

i=1

σif(xi)

∣

∣

∣

∣

∣

≥ ǫ

}

≤ 2 exp

(

− ǫ2

2m

)

for a fixed function f , since the expected value
of the sum is 0, and the maximum change by
replacing a σi is 2.
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Relation to VC theorem cont.

• By Sauer’s lemma there are at most (em/d)d

we can bound the probability that the sum is
bounded by ǫ for all functions by

(em

d

)d

2 exp

(

− ǫ2

2m

)

=: δ.

• Taking δ = m−1 and solving for ǫ gives

ǫ =

√

2md ln
em

d
+ 2m ln(2m)
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Rademacher bound for VC class

• Hence we can bound

R̂m(H) ≤ 2

m
(δm + ǫ(1 − δ))

≤ 2

m
+

√

8(d ln(em/d) + ln(2m))

m

• This is equivalent to the PAC bound with non-
zero loss, except that we could have used the
growth function or VC dimension measured on
the sample rather than the sup over the whole
input space.
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Application to large margin
classification

• Rademacher complexity comes into its own for
Boosting and SVMs.
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Application to Boosting

• We can view Boosting as seeking a function from
the class

{

∑

h∈H

ahh(x) :
∑

h∈H

ah ≤ B

}

= convB(H)

by minimising some function of the margin
distribution. For the 1-norm of the slack variables
we arrive at Linear programming boosting that
minimises

∑

h

ah + C
m
∑

i=1

ξi,

where ξi = (1 − yi

∑

h ahh(xi))+.
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Rademacher complexity of convex
hulls

Rademacher complexity has a very nice property
for convex hull classes:

R̂m(convB(H)) =
2

m
Eσ



 sup
hj∈H,

∑

j aj≤B

∣

∣

∣

∣

∣

∣

m
∑

i=1

σi

∑

j

ajhj(xi)

∣

∣

∣

∣

∣

∣





≤ 2

m
Eσ



 sup
hj∈H,

∑

j aj≤B

∑

j

aj

∣

∣

∣

∣

∣

m
∑

i=1

σihj(xi)

∣

∣

∣

∣

∣





≤ sup
∑

j aj≤B

∑

j

aj
2

m
Eσ

[

sup
hj∈H

∣

∣

∣

∣

∣

m
∑

i=1

σihj(xi)

∣

∣

∣

∣

∣

]

≤ sup
∑

j aj≤B

∑

j

ajR̂m(H)

≤ BR̂m(H).
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Rademacher complexity of convex
hulls cont.

• Hence, we can move to the convex hull without
incurring any complexity penalty for B = 1!
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Rademacher complexity for SVMs

• The Rademacher complexity of a class of linear
functions with bounded 2-norm:

{

x →
m
∑

i=1

αiκ(xi,x):α′
Kα ≤ B2

}

⊆

⊆ {x → 〈w, φ (x)〉 : ‖w‖ ≤ B}
= FB,

where we assume a kernel defined feature
space with

〈φ(x), φ(z)〉 = κ(x, z).
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Rademacher complexity of FBThe following derivation gives the result

R̂m(FB) = Eσ

[

sup
f∈FB

∣

∣

∣

∣

∣

2

m

m
∑

i=1

σif (xi)

∣

∣

∣

∣

∣

]

= Eσ

[

sup
‖w‖≤B

∣

∣

∣

∣

∣

〈

w,
2

m

m
∑

i=1

σiφ (xi)

〉∣

∣

∣

∣

∣

]

≤ 2B

m
Eσ

[∥

∥

∥

∥

∥

m
∑

i=1

σiφ(xi)

∥

∥

∥

∥

∥

]

=
2B

m
Eσ











〈

m
∑

i=1

σiφ(xi),
m
∑

j=1

σjφ(xj)

〉





1/2






≤ 2B

m



Eσ





m
∑

i,j=1

σiσjκ(xi,xj)









1/2

=
2B

m

√

√

√

√

m
∑

i=1

κ(xi,xi)
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Applying to 1-norm SVMs
We take the following formulation of the 1-norm
SVM:

minw,b,γ,ξ −γ + C
∑m

i=1 ξi

subject to yi (〈w, φ (xi)〉 + b) ≥ γ − ξi, ξi ≥ 0,
i = 1, . . . ,m, and ‖w‖2

= 1.
(1)

Note that
ξi = (γ − yig(xi))+ ,

where g(·) = 〈w, φ(·)〉 + b.

• The first step is to introduce a loss function which
upper bounds the discrete loss

P (y 6= sgn(g(x))) = E [H(−yg(x))],

where H is the Heaviside function.
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Applying the Rademacher theorem

• Consider the loss function A : R → [0, 1], given
by

A(a) =







1, if a > 0;
1 + a/γ, if −γ ≤ a ≤ 0;
0, otherwise.

• By the Rademacher Theorem and since the loss
function A − 1 dominates H − 1, we have that

E [H(−yg(x)) − 1] ≤ E [A(−yg(x)) − 1]

≤ Ê [A(−yg(x)) − 1] +

R̂m((A − 1) ◦ F) + 3

√

ln(2/δ)

2m
.
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Empirical loss and slack variables

• But the function A(−yig(xi)) ≤ ξi/γ, for i =
1, . . . , ℓ, and so

E [H(−yg(x))] ≤ 1

mγ

m
∑

i=1

ξi + R̂m((A − 1) ◦ F) + 3

√

ln(2/δ)

2m
.

• The final missing ingredient to complete the
bound is to bound R̂m((A − 1) ◦ F) in terms of
R̂m(F).

• This will require a more detailed look at
Rademacher complexity.
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Rademacher complexity bounds

• First simple observation:

for a ∈ R, R̂m(aF) = |a|R̂m(F),

since af is the function achieving the sup for
some σ for aF iff f achieves the sup for F.

• We are interested in bounding RC R̂m(L ◦
F) ≤ 2LR̂m(F) for class L ◦ F = {L ◦ f : f ∈ F},
where L satisfies, L(0) = 0 and

|L(a) − L(b)| ≤ L|a − b|,

i.e. L is a Lipschitz function with constant L > 0.
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Rademacher complexity bounds cont.

• In our case L = A − 1 and L = 1/γ.

• By above it is sufficient to prove for case L = 1
only, since then

R̂m(L ◦ F) = LR̂m((L/L) ◦ F) ≤ 2LR̂m(F)

Berder Island Summer School, September 2004 99



Proof for contraction ( L = 1)

Want to get rid of absolute value in RC:

R̂m(F) = Eσ

[

sup
f∈F

∣

∣

∣

∣

∣

2

m

m
∑

i=1

σif (zi)

∣

∣

∣

∣

∣

]

so consider defining

L
+ = L, L

−(a) = −L(−a).
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Proof for contraction ( L = 1)

Assume F is closed under negation. Now if for
some σ sup achieved with f such that

m
∑

i=1

σiL (f (zi)) < 0,

then

∣

∣

∣

∣

∣

m
∑

i=1

σiL (f (zi))

∣

∣

∣

∣

∣

=
m
∑

i=1

σiL
− (−f (zi)) ,
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Contraction proof cont.

• and so

R̂m(L ◦ F) = Eσ

[

sup
f∈F,N∈{L+,L−}

2

m

m
∑

i=1

σiN (f (zi))

]

• if we further assume 0 ∈ F we have

R̂m(L ◦ F) = Eσ

[

sup
f∈F

2

m

m
∑

i=1

σiL
+ (f (zi))

]

+Eσ

[

sup
f∈F

2

m

m
∑

i=1

σiL
− (f (zi))

]
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Contraction proof cont.

• Hence if we show the result without the factor of
2 for the complexity without absolute values the
desired result will follow, since for classes closed
under negation we have

R̂m(F) = Eσ

[

sup
f∈F

2

m

m
∑

i=1

σif (zi)

]

.
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Contraction proof cont.

• We show

Eσ

[

sup
f∈F

m
∑

i=1

σiL(f(xi))

]

≤ Eσ

[

sup
f∈F

σ1f(x1) +
m
∑

i=2

σiL(f(xi))

]

and apply induction to obtain the full result.
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Contraction proof cont.

• We take the permutations in pairs:

(1, σ2, . . . , σm) and (−1, σ2, . . . , σm)

The result will follow if we show that for all f, g ∈
F we can find f ′, g′ ∈ F such that (fi = f(xi) etc.)

L(f1) +
m
∑

i=2

σiL(fi)) − L(g1) +
m
∑

i=2

σiL(gi)

≤ f ′
1 +

m
∑

i=2

σiL(f ′
i)) − g′1 +

m
∑

i=2

σiL(g′i).
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Contraction proof end
• If f1 ≥ g1 take f ′ = f and g′ = g to reduce to

showing

L(f1) − L(g1) ≤ f1 − g1 = |f1 − g1|

which follows since |L(f1) − L(g1)| ≤ |f1 − g1|.

• Otherwise f1 < g1 and we take f ′ = g and g′ = f
to reduce to showing

L(f1) − L(g1) ≤ g1 − f1 = |f1 − g1|

which again follows from

|L(f1) − L(g1)| ≤ |f1 − g1|.
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Final SVM bound

• Assembling the result we obtain:

P (y 6= sgn(g(x))) = E [H(−yg(x))]

≤ 1

mγ

m
∑

i=1

ξi +
4

mγ

√

√

√

√

m
∑

i=1

κ(xi,xi) + 3

√

ln(2/δ)

2m

• Note that for the Gaussian kernel this reduces to

P (y 6= sgn(g(x))) ≤ 1

mγ

m
∑

i=1

ξi +
4√
mγ

+ 3

√

ln(2/δ)

2m

Berder Island Summer School, September 2004 107



Kernel PCA

• the projection of a new point into the space
spanned by the i-th eigenvector of the correlation
matrix

C(S) =
1

m

m
∑

i=1

φ(xi)φ(xi)
′

of a sample S can be computed as

Pui
(φ(x)) = λ̂

−1/2
i

m
∑

j=1

vijκ(x,xj),

where (vij)
m
j=1, λ̂i are the i-th eigenvector and

eigenvalue of the kernel matrix K(S).
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Kernel PCA cont.

• Hence we can perform PCA in a kernel defined
feature space in the orthonormal basis given by
the eigen-vectors of C(S).

• PCA standard technique applied for low dimensional
feature spaces – no guarantee that it is always
sensible to use the approach in the high-
dimensional feature spaces typical of kernel
methods.
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Analysis of Kernel PCA

• SLT should be able to highlight the critical
elements which affect the quality of the kernel
PCA.

• Consider performing PCA on a randomly drawn
training set S of size m in the feature space
defined by a kernel κ(x, z) and project new
data onto the space V̂ spanned by the first k
eigenvectors
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Statistical analysis of PCA

• with probability greater than 1 − δ over the
generation of the sample S the expected squared
residual is bounded by

E
[

‖P⊥
V̂

(φ(x))‖2
]

≤ 1

m

m
∑

i=k+1

λ̂i(S)

+
1 +

√
k√

m

√

√

√

√

2

m

m
∑

i=1

κ(xi,xi)2 + R2

√

18

m
ln

(

2

δ

)

,

where the support of the distribution is in a ball
of radius R in the feature space.
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Outline of proof

• Let X = UΣV ′ be the singular value
decomposition of the sample matrix X in the
feature space. The projection norm is then given
by

f̂(x) = ‖PV̂ (φ(x))‖2 = φ(x)′UkU
′
kφ(x),

where Uk is the matrix containing the first k
columns of U .
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Outline of proof

• Hence we can write

‖PV̂ (φ(x))‖2 =

NF
∑

ij=1

wijφ(x)iφ(x)j =

NF
∑

ij=1

wijφ̂(x)ij,

where φ̂ is the projection mapping into the feature
space F̂ consisting of all pairs of F features and
wij = (UkU

′
k)ij.
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Feature space construction

• The standard polynomial construction gives

κ̂(x, z) = κ(x, z)2 =





NF
∑

i=1

φ(x)iφ(z)i





2

=

NF
∑

i,j=1

φ(x)iφ(z)iφ(x)jφ(z)j

=
〈

φ̂(x), φ̂(z)
〉

F̂
.
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Feature space construction cont.

• The norm of f̂ satisfies (note that ‖ · ‖F denotes
the Frobenius norm)

‖f̂‖2 =

NF
∑

i,j=1

α2
ij = ‖UkU

′
k‖2

F

=

〈

k
∑

i=1

uiu
′
i,

k
∑

j=1

uju
′
j

〉

F

=
k
∑

i,j=1

(u′
iuj)

2 = k
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Applying Rademacher complexity

• We consider the function class F̂√
k with respect

to the kernel

κ̂(x, z) = κ(x, z)2,

augmenting the corresponding primal weight
vectors with one further dimension while augmenting
the corresponding input vectors with a feature

‖φ(x))‖2k−0.25 = κ(x,x)k−0.25 = k−0.25
√

κ̂(x,x)

= ‖φ̂(x))‖k−0.25
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Applying Rademacher complexity cont.

• We now apply the Rademacher theorem to the
class

F̂ =
{

fℓ : (φ̂(x), ‖φ̂(x))‖k−0.25)

7→ (‖φ̂(x))‖ − f(φ̂(x)))R−2 | f ∈ F̂√
k ∩ P

}

⊆ R−2
F̂′√

k+
√

k
,
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Conclusions

• Outline of philosophy and approach of SLT

• Central result of SLT

• Touched on covering number analysis for margin
based analysis

• Moved to consideration of Rademacher complexity.

• Case of RC for classification

• Example of applying RC to kernel PCA.
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Where to find out more

Web Sites: www.support-vector.net (SV Machines)

www.kernel-methods.net (kernel methods)

www.kernel-machines.net (kernel Machines)

www.neurocolt.com (Neurocolt: lots of TRs)

www.pascal-network.org

References

[1] N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler.
Scale-sensitive Dimensions, Uniform Convergence, and
Learnability. Journal of the ACM, 44(4):615–631, 1997.

Berder Island Summer School, September 2004 119



[2] M. Anthony and P. Bartlett. Neural Network Learning:
Theoretical Foundations. Cambridge University Press,
1999.

[3] M. Anthony and N. Biggs. Computational Learning
Theory, volume 30 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1992.

[4] M. Anthony and J. Shawe-Taylor. A result of Vapnik with
applications. Discrete Applied Mathematics, 47:207–
217, 1993.

[5] K. Azuma. Weighted sums of certain dependent random
variables. Tohoku Math J., 19:357–367, 1967.

[6] P. Bartlett and J. Shawe-Taylor. Generalization
performance of support vector machines and other
pattern classifiers. In B. Schölkopf, C. J. C. Burges,
and A. J. Smola, editors, Advances in Kernel Methods
— Support Vector Learning, pages 43–54, Cambridge,
MA, 1999. MIT Press.

[7] P. L. Bartlett. The sample complexity of pattern
classification with neural networks: the size of the
weights is more important than the size of the network.

Berder Island Summer School, September 2004 120



IEEE Transactions on Information Theory, 44(2):525–
536, 1998.

[8] P. L. Bartlett and S. Mendelson. Rademacher and
Gaussian complexities: risk bounds and structural
results. Journal of Machine Learning Research, 3:463–
482, 2002.

[9] S. Boucheron, G. Lugosi, , and P. Massart. A sharp
concentration inequality with applications. Random
Structures and Algorithms, pages vol.16, pp.277–292,
2000.

[10] O. Bousquet and A. Elisseeff. Stability and
generalization. Journal of Machine Learning Research,
2:499–526, 2002.

[11] N. Cristianini and J. Shawe-Taylor. An introduction to
Support Vector Machines. Cambridge University Press,
Cambridge, UK, 2000.

[12] Y. Freund and R. E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. In Computational Learning Theory: Eurocolt
’95, pages 23–37. Springer-Verlag, 1995.

Berder Island Summer School, September 2004 121



[13] W. Hoeffding. Probability inequalities for sums of
bounded random variables. J. Amer. Stat. Assoc.,
58:13–30, 1963.

[14] M. Kearns and U. Vazirani. An Introduction to
Computational Learning Theory. MIT Press, 1994.

[15] V. Koltchinskii and D. Panchenko. Rademacher
processes and bounding the risk of function learning.
High Dimensional Probability II, pages 443 – 459, 2000.

[16] J. Langford and J. Shawe-Taylor. PAC bayes and
margins. In Advances in Neural Information Processing
Systems 15, Cambridge, MA, 2003. MIT Press.

[17] M. Ledoux and M. Talagrand. Probability in Banach
Spaces: isoperimetry and processes. Springer, 1991.

[18] C. McDiarmid. On the method of bounded differences. In
141 London Mathematical Society Lecture Notes Series,
editor, Surveys in Combinatorics 1989, pages 148–188.
Cambridge University Press, Cambridge, 1989.

[19] R. Schapire, Y. Freund, P. Bartlett, and W. Sun
Lee. Boosting the margin: A new explanation for the
effectiveness of voting methods. Annals of Statistics,

Berder Island Summer School, September 2004 122



1998. (To appear. An earlier version appeared in:
D.H. Fisher, Jr. (ed.), Proceedings ICML97, Morgan
Kaufmann.).

[20] J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson,
and M. Anthony. Structural risk minimization over
data-dependent hierarchies. IEEE Transactions on
Information Theory, 44(5):1926–1940, 1998.

[21] J. Shawe-Taylor and N. Cristianini. On the generalisation
of soft margin algorithms. IEEE Transactions on
Information Theory, 48(10):2721–2735, 2002.

[22] J. Shawe-Taylor and N. Cristianini. Kernel Methods
for Pattern Analysis. Cambridge University Press,
Cambridge, UK, 2004.

[23] J. Shawe-Taylor, C. Williams, N. Cristianini, and J. S.
Kandola. On the eigenspectrum of the gram matrix
and its relationship to the operator eigenspectrum. In
Proceedings of the 13th International Conference on
Algorithmic Learning Theory (ALT2002), volume 2533,
pages 23–40, 2002.

[24] M. Talagrand. New concentration inequalities in product

Berder Island Summer School, September 2004 123



spaces. Invent. Math., 126:505–563, 1996.

[25] V. Vapnik. Statistical Learning Theory. Wiley, New York,
1998.

[26] V. Vapnik and A. Chervonenkis. Uniform convergence of
frequencies of occurence of events to their probabilities.
Dokl. Akad. Nauk SSSR, 181:915 – 918, 1968.

[27] V. Vapnik and A. Chervonenkis. On the uniform
convergence of relative frequencies of events to their
probabilities. Theory of Probability and its Applications,
16(2):264–280, 1971.

[28] Tong Zhang. Covering number bounds of certain
regularized linear function classes. Journal of Machine
Learning Research, 2:527–550, 2002.

Berder Island Summer School, September 2004 124


