

Combining a co-occurrence-based and a semantic measure for entity linking

ESWC 2013: Extended Semantic Web Conference 28 May 2013, Montpellier, France

Bernardo Pereira Nunes, Stefan Dietze, Marco Antonio Casanova, Ricardo Kawase, <u>Besnik Fetahu</u>, Wolfgang Nejdl (PUC-Rio, BR) (L3S Research Center, DE)

Outline

- Introduction
- Motivation Example
- A combined approach towards entity linking
 - Semantic Connectivity Score Katz Index
 - Co-occurrence-based measures
 - Combined entity linking approach
- Evaluation
- Results
- Conclusions

Introduction

- Linked Data and Web resources
- Sparsely interlinked resources
- Knowledge bases, with structured knowledge about entities
- NER & NED for extraction of entities
- Few semantics relationships between entities (skos:related, so:related)
- Entity linking, meaningful only at first (direct) degree of connectivity
- Exhaustive process considering large amounts of resources

Motivation Example

- Semantic relatedness of concepts (entities)
- Exploit existing knowledge base structures
- Resource semantic similarity (entities)
- Latent relationships via semantic relations

- The <u>Charlotte Bobcats</u> could go from the <u>NBA</u>'s worst team to its best bargain.
- •The New York Knicks got the big-game performances they desperately needed from Carmelo Anthony and Amar'e Stoudemire to beat the Miami Heat.

A combined entity-linking approach

Novel approach on entity-linking across resources of same and disparate datasets.

- Semantic Connectivity Score (SCS)— knowledge graph based on Social Network Theory – Katz Index.
- Co-occurrence based Measure (CBM) utilise entity co-occurrence in the Web.

Semantic Connectivity Score - SCS

- Measure relatedness of entity pairs computing Katz's Index
- Use transversal properties to compute relatedness
- Exclude *hierarchical* properties:
 - rdfs:subClassOf
 - dcterms:subject
 - skos:broader
- Quantify semantic connectivity of entity pairs (e_1, e_2) :

Semantic Connectivity Score - SCS (1)

Adoptions to knowledge graphs towards applying Katz index measure

- Remove edge directions from graphs
- Inverse properties considered equivalent:
 - i.e. $isFathorOf \leftrightarrow isSonOf$
- Empirically determine path length

Inverse property equivalence

Semantic Connectivity Score – SCS (2)

- Optimization factors for Katz:
 - Exponentially many paths, measuring entity pair relatedness
 - Small world assumptions
 - Tradeoff of path length and connectivity contribution (τ =4)

Co-occurrence-based Measure (CBM)

- Approximate number of Web resources mentioning entity pairs
- Similar to Pointwise Mutual Information and Normalised Google Distance
- Query search engines: e.g. "Carmelo Anthony" + "Charlotte Bobcats"
- Extract occurrences of each entity, and as well the entity pairs

$$CBM(e_1, e_2) = \begin{cases} 0, \text{if } count(e_1) = 0 \lor count(e_2) = 0\\ 1, \text{if } count(e_1) = count(e_2) = count(e_1, e_2) = 1\\ \frac{\log(count(e_1, e_2))}{\log(count(e_1))} \cdot \frac{\log(count(e_1, e_2))}{\log(count(e_2))}, \text{ otherwise} \end{cases}$$

A combined entity-linking approach

- SCS as an exhaustive entity-linking procedure
- CBM –search engines to measure relatedness based on entity co-occurrence
- Complementary entity-linking results
- A combined measure, scalable and with broader coverage:

$$\alpha_{CBM+SCS}(e_i, e_j) = \begin{cases} CBM(e_i, e_j), & \text{if } CBM(e_i, e_j) > 0\\ SCS(e_i, e_j), & \text{otherwise} \end{cases}$$

Evaluation Setup

- Dataset: USAToday news
 - 40,000 document and 80,000 entity pairs
- Gold standard generated using human evaluators
 - 600 document and 1000 entity assessed pairs
- Quantify connectivity with 5-point Likert scale:
 - correctness: strongly disagree to strongly agree
 - expectedness: extremely unexpected to extremely expected
- Compare CBM, SCS, ESA entity-linking approaches
- Standard performance metrics: precision/recall/F1 measure

Entity-Linking Results

• 5-point Likert scale, entity connectivity based on gold standard:

Strongly Agree	Agree	Undecided	Disagree	Strongly Disagree
63	178	127	227	217

Entity-linking Results (1)

Analysis of uncovered entity connections from competing approaches

	CBM (not in SCS)	CBM (not in ESA)	SCS (not in CBM)	SCS (not in ESA)	ESA (not in CBM)	ESA (not in SCS)
Strongly Agree	9.5%	76%	3.1%	71%	7.9%	9.5%
Agree	12.3%	63.4%	11.2%	60.1%	8.9%	6.7%
Undecided	9.4%	60.6%	6.3%	59.8%	5.5%	7.9%
Disagree	15.0%	63.0%	7.1%	53.3%	7.1%	5.3%
Strongly Disagree	18.4%	63.1%	51.6%	4.6%	4.6%	6.9%

- Expectedness of uncovered entity connections:
 - SCS 25% unexpected novel entity links
 - CBM 16% unexpected novel entity links

Entity-Linking Result Analysis

Connectivity agreement: SCS vs. CBM

Measured agreement based on Kendall's correlation coefficient:

τ	k@2	k@5	k@10
USAToday	0.40	0.47	0.52

Entity-Linking Results Analysis (1)

Complementary entity connections between SCS and CBM

	СВМ	SCS	ESA	CBM+SCS
Precision	0.32	0.34	0.16	0.34
Recall (GS)	0.81	0.78	0.23	0.90
Recall	0.52	0.51	0.15	0.58
F1 (GS)	0.46	0.47	0.19	0.50
F1	0.40	0.41	0.15	0.43

- Many entity connections labelled as "undecided", correct
- Examples: "Baracak Obama" and "Olympia Snowe"
 - Human evaluators, marked as not connected
 - SCS uncovered a connection of length 2 and more

Conclusions

- An <u>entity-linking</u> approach across disparate datasets
- Knowledge graphs, adapted and utilized to uncover entity connections via SCS and CBM
- Balanced tradeoffs between information gain and processing time for SCS
- Entity-linking <u>gold standard</u> measuring <u>correctness</u> of connectivity and <u>expectedness</u>
- Combination of SCS and CBM as scalable entity-linking approach
- Increased precision and recall based on <u>SCS+CBM</u>
- Correctly uncovered connections marked as irrelevant by human evaluators

Future Work

- Exploit semantics of edges connecting entities
- Detailed distinction of edges based on entity types
- Gold standard improvement, by showing the trace of intermediary entities
 helping uncover a connection between an entity pair
- Filtering of nodes from a knowledge graph to improve scalability

Thank you! Questions?