

Automatic Ontology Matching

Semi-automatic Ontology Matching

- < Author, Author, =, 0.97 >
- < Paper, Paper, =, 0.94 >
- < reviews, reviews, =, 0.91 >
- < writes, writes, =, 0.7 >

improve the results?

Which matcher should I take?

- < Author, Author, =, 0.97 >
- < Paper, Paper, =, 0.94 >
- < reviews, reviews, =, 0.91 >
- < writes, writes, =, 0.7 >
- < Person, People, =, 0.8 >
- < Document, Doc, =, 0.7 \geq

- Semi-automatic Ontology Matching
- Evaluation Measure for Semi-automatic OM

Evaluation Framework

- Experiments and Results
- Conclusion and Future Work

- Asking for validation of a candidate alignment
- Asking for definition of the relation in a candidate alignment
- Asking for completion of an element in a candidate alignment

Semi-automatic Ontology Matching

Extention of J. Euzenat and P. Shvaiko. Ontology Matching. Springer, 2007.

Evaluation Measure

- Precision, Recall, F-measure
 - -> do not take the expert's workload into account
- Need a measure to represent the trade-off

- Assign cost c to each action a
 - -> can be time, money, etc.

• To simplify automatic evaluation, weights can be assigned to different types of actions

 Plotting the learning curve of F-measure (preliminary alignment) relative to the cost consumed

• Use the normalized area under the learning curve as measure (AUL)

 High AUL – high overall F-measure with few user interactions

Example Learning Curve

Framework

28.05.13

Experiments

Use cases for interactive matching

Show the applicability of our approach

Experiment 1: Matcher Selection

• Experiment 2: Matcher Parametrization

Matcher Selection

Select the best matcher for a certain task

- Let the user verify the correspondences found by at least one but not by all matchers
 - -> create a ranking for each matcher
- Two possibilities to compute the ranking: Partial F-measure and Scoring
- OAEI 2012 conference track and matchers (CODI, LogMap, Optima)

Matcher Selection Results

Matcher Selection Results (all)

- Determine optimal parameters (here threshold) by letting the user verify mappings
- The presented mappings are selected by using a search window *w* around the threshold

• Starting with 0.0, 0.5 and 1.0, continuing with the intervals next to the best threshold

• Used matcher WeSeE with an adjustable threshold, OAEI Conference Track

Matcher Parametrization Results

Conclusion

- So far, no evaluation for interactive ontology matchers
- Trade-off between quality of the alignment and the amount of user interaction (AUL measure)
- Framework to fully automatically evaluate interactive ontology matching systems
- Matcher selection and parametrization are use cases where interactive matching can improve the results

Future Work

- OAEI Interactive Evaluation Track
- Other possible user interactions, e.g. complex matching?
- Suitable weights for different interactions
- Further improvements of user interactions, e.g. verify correspondences containing the same entities
- Measuring user experience

Thank you

for your attention!